Relative Water Content and Rooting of Subirrigated Stem Cuttings in Four Environments without Mist

in HortScience
View More View Less
  • 1 Department of Horticulture, Iowa State University, Ames, IA 50011-1100

Air temperature and photosynthetically active radiation (PAR) effects on relative water content (RWC), rooting percentage, root count, and root mass of unmisted, subirrigated stem cuttings of two taxa were determined. Leaf RWC of `Charm' chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] decreased until roots initiated and then increased, was lower for cuttings at 23 °C photoperiod/14 °C dark than for cuttings at 31 °C photoperiod/22 °C dark, and was lower at 193 than at 69 μmol·m–2·s–1 PAR. Neither temperature nor PAR affected leaf RWC of `Dollar Princess' fuchsia (Fuchsia ×hybrida Hort. ex Vilm.), which increased linearly before and after root initiation. Rooting percentage and root count were higher with photoperiods at 31 °C than at 23 °C for chrysanthemum after 7 days and for fuchsia after 10 days. Although all cuttings of both taxa had rooted after 14 days, root dry mass was higher with photoperiods at 31 °C than at 23 °C regardless of PAR for fuchsia and at 69 μmol·m–2·s–1 PAR for chrysanthemum. Propagators wishing to use subirrigation instead of mist, fog, or enclosure can minimize the decline in leaf RWC before root initiation and increase the number and dry mass of roots of chrysanthemum by using 69 μmol·m–2·s–1 PAR and a 31 °C photoperiod/22 °C dark cycle. Root dry mass of fuchsia also can be increased by the use of high temperature, but differences in rooting were independent of changes in leaf RWC.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 23 0
PDF Downloads 108 29 0