Effect of Mycorrhizal Fungi and Phosphorus Stress on Gas Exchange, Growth, and Development of Capsicum annuum L. cv. San Luis (Chile Ancho pepper)

in HortScience
View More View Less
  • 1 Dept. of Horticultural Sciences, Texas A&M Univ., College Station, TX 77843, and CINVESTAV Plant Biology Inst., Irapuato, Mexico

Seedlings of Capsicum annuum L. cv. San Luis were grown in pots containing a pasteurized mixture of sand and sandy loam soil inoculated or noninoculated with the V-A mycorrhizal (VAM) fungus Glomus intraradices Schenck et Smith. Long Ashton nutrient solution (LANS) was modified to supply P at 0, 11 or 44 μg·ml–1. Diurnal gas exchange measurements were taken 15, 30 and 50 days after the experiment was initiated. Plant growth, leaf elemental content, and mycorrhizal development were assessed 52 days after transplanting. Gas exchange and net photosynthesis were enhanced by mycorrhiza and full strength LANS fertilization (44 μg·ml–1). The symbiosis increased leaf nutrient content of P, K, Mg, S, Fe, Mn, Zn, Cu, B, Mo, and Al. Mycorrhizal plants had higher shoot dry weights, leaf number, leaf area, and fruit primordia than nonmycorrhizal plants with P at 0 and 11 μg·ml–1. Root colonization (arbuscules, vesicles, and internal and extraradical hyphae development) were higher with P at 0 and 11 μg·ml–1. The quantity of spores recovered in soil was independent of P treatments.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 12 1
PDF Downloads 103 46 3