Dynamic Optimization of Photosynthetic Photon Flux for Efficient Photosynthesis and Growth of Leaf Lettuce Canopies

in HortScience
View More View Less
  • 1 Dept. of Horticulture, Purdue Univ., West Lafayette, IN 47907-1165

`Waldmann's Green' leaf lettuce (Lactuca sativa L.) is being used as a model leafy vegetable crop to develop a protocol for variable control of photosynthetic photon flux (PPF) during crop production. Feedback from real-time photosynthetic gas exchange rates by lettuce canopies is used to modulate electronic dimming ballasts of lamp banks. Algorithms within process-control software are being fine tuned to maximize increments of photosynthetic output relative to increments of photon input. Dynamic optimization of PPF was 21% more efficient than constant high PPF saturating photosynthesis with respect to biomass accumulated per photons absorbed. Dynamic optimization also is being combined with principles of phasic control, in which environmental resources such as photosynthetically active radiation (PAR) and carbon dioxide (CO2) are deliberatively limited in input during specific phases of crop development when plants are less sensitive to inputs (e.g., lag, plateau, and senescence phases) but optimized for the responsive exponential phase. Preliminary results indicate that leaf lettuce growth benefits from optimizing environments for no more than 4 or 5 days during a 20-day production cycle. Dynamic optimization of CO2 level is achieved by controlling the injection of CO2 into the inlet air stream of Minitron II crop canopy cuvette/growth chambers. Algorithms are being modified to simultaneously vary PPF and CO2 for optimum photosynthesis.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 3
PDF Downloads 13 13 4