Comparison of Single Leaf and Whole Canopy Gas Exchange Rates of Tomato and Soybean throughout Stand Development

in HortScience
Authors: G.W. Stutte1 and N.C. Yorio1
View More View Less
  • 1 Dynamac Corporation, Mail Code DYN-3, Kennedy Space Center, FL 32899

The relationship between whole canopy and single leaf measurements of gas exchange has not been well documented. Two experiments were conducted in the Biomass Production Chamber at Kennedy Space Center (20-m2 growing area) to compare whole canopy versus single leaf net carbon assimilation rate (Anet) measurement of a stand of tomato (Lycopersicon esculentum Mill. cv. Reimann Philipp) and soybean [Glycine max (L.) Merr. cv. Hoyt]. Both crops were grown under a 12/12 hour photoperiod under HPS lamps at PPF of 800 (mol·m–2·s–1, at 26/22°C (light/dark), and constant 65% RH for 90 days. CO2 concentration was controlled to 1200 (mol·mol–1 during the light cycle. Midday measurements of Anet of single leaves were obtained weekly from upper canopy leaves using a portable photosynthesis system. Whole canopy measurements of Anet were calculated daily from CO2 addition data obtained at 5-minute intervals by the BPC monitoring and control system. Single leaf rates exceeded whole canopy rates prior to full canopy coverage then averaged 0.63 of whole canopy for both species during the period of full canopy coverage. Results suggest that reliable estimates of canopy gas exchange can be obtained from single leaf measurements under relatively constant environment conditions.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 8 2
PDF Downloads 70 36 6