Floral Initiation in Pelargonium×domesticum is Affected by Total Cumulative Irradiance

in HortScience
View More View Less
  • 1 Intercollege Program in Genetics, Dept. of Horticulture, The Pennsylvania State Univ., University Park, PA 16802

Floral initiation signals the commencement of sexual reproduction in angiosperms. In many plant species this developmental phase is controlled by photoperiod. However, it may be regulated by other factors, such as plant age or specific temperature or irradiance requirements. Floral initiation occurs in Pelargonium ×domesticum (regal Pelargoniums) in response to exposure to cool (7–12°C) temperatures for about 4–6 weeks, or to cumulative irradiance at 18–23°C. Broad genetic variability exists so that floral initiation in some cultivars is almost completely controlled by temperature, while in others it is almost completely controlled by cumulative irradiance. Among the latter group of genotypes, genetic variability exists for the amount of irradiance required. The purpose of this study was to determine the precise irradiance requirements for nine commercially important cultivars. The cultivars varied significantly in their response to irradiance with respect to floral initiation. Low irradiance requiring genotypes developed visible (5 mm) buds with as little as 250 mol of total cumulative irradiance; floral initiation in these cultivars occurred with only 50 mol of irradiance. High irradiance requiring genotypes still had vegetative meristems after 300 mol of total cumulative irradiance. Further studies were conducted on `Majestic', chosen for its high irradiance requirement. The objective of this study was to determine whether cool temperatures (7–12°C) or heat stress (23–28°C) could replace the irradiance effect. The results indicated that neither of these environmental conditions could replace the effects of moderate temperature (18–23°C) and high cumulative irradiance in this cultivar.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 9 0
PDF Downloads 246 69 10