Xylem Sap Abscisic Acid Concentrations and Stomatal Conductance in Mycorrhizal Cowpea

in HortScience
View More View Less
  • 1 O.H.L.D., Univ. of Tennessee, P.O. Box 1071, Knoxville, TN 37901.

Mycorrhizal colonization can alter stomatal behavior of host leaves before or during soil drying, but the mechanism of influence is not always clear. We examined the possibility that mycorrhizal symbiosis might result in either altered stomatal sensitivity to abscisic acid (ABA) moving from roots to shoots in xylem sap, or altered movement of ABA in xylem as a function of soil water content (θ). Mycorrhizal colonization of Vigna unguiculata did not change the relationship between stomatal conductance (gs) and xylem [ABA] during drying of whole root systems. Stomatal conductance was higher in mycorrhizal than in similarly sized and similarly nourished nonmycorrhizal plants when soil moisture was relatively high, perhaps related to lower xylem [ABA] in mycorrhizal plants at high soil θ. Neither gs nor xylem [ABA] was affected by mycorrhizae at low soil θ. Higher gs in mycorrhizal plants was evidently not related to a mycorrhizal effect on leaf water status, as neither gs/shoot Ψ nor shoot Ψ/soil θ relationships were altered by the symbiosis. Stomatal conductance was much more closely correlated with xylem [ABA] than with soil θ or shoot Ψ. Decreased xylem [ABA] may explain why mycorrhizal colonization sometimes increases gs of unstressed mycorrhizal plants in the absence of mycorrhizae-induced changes in host nutrition. This work was supported by USDA NRICGP grant 91-37100-6723 (R.M.A).

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 9 1
PDF Downloads 49 16 0