Electronic Sensing of Volatiles from Tomato Juice as a New Technology for Quality Control and Detection

in HortScience
View More View Less
  • 1 Center for New Crops & Plant Products, Dept. of Horticulture, Purdue Univ., West Lafayette, IN 47907-1165.

Recent developments in electronic odor-sensing technology has opened the opportunity for non-destructive, rapid, and objective assessment of food quality. We have developed an electronic sensor (electronic sniffer) that measures aromatic volatiles that are naturally emitted by fruits and fruit products. The ability of our sniffer to detect contamination in fruit juice was tested using tomato juice as a model system. Tomato juice was extracted from cultivar Rutgers and divided into eight glass jars of 300 g juice each. The jars were divided into two treatments: the control jars contained tomato juice mixed with 0.15% sorbic acid to suppress microbial growth, and the experimental jars contained only tomato juice. All the jars were placed open, on a counter top in the laboratory for 8 days. The juice was tested daily with the electronic sniffer and for pH. The total volatiles in the headspace of the juice was extracted on alternating days via dynamic headspace method using charcoal traps, analyzed by gas chromatography, and confirmed by GC/mass spectometry. The results indicate that the sniffer is able to detect differences between the two treatments 4 days after the tomato juice was exposed to ambient atmosphere. The electronic sniffer output for the control juice showed a monotonous decline, while the output for the experimental juice exhibited a sharp incline after day four. This sensor output correlated well with the total volatiles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 9 0
PDF Downloads 31 8 1