Response of New Guinea Impatiens to Various Levels of Salinity in a Subirrigation System

in HortScience
View More View Less
  • 1 Dept. of Horticultural Sciences, Texas A&M Univ., College Station, TX 77843-2133.

Concerns over groundwater contamination due to greenhouse runoff have caused many growers to turn to subirrigation as an alternative watering method. One reported problem is the movement of salts to the top layer of the rootzone due to zero leaching. Many growers are faced with the added challenge of subirrigating plants with poor-quality water than contains a high salt content before the addition of fertilizer. An experiment was conducted to investigate the movement of salts in the root zone and the effects on root development and overall plant growth. Plants were grown using water treated with NaCl + CaCl2 (1:1 equivalent basis) at the following total concentrations: 0, 2, 4, 6, 8, 10, 14, and 18 mM. Treatment time was 10 weeks (marketable stage). At harvest, height was measured and plants were cut off at the soil line and divided into shoots (stems and leaves) and roots for fresh and dry weight. Leaf area was measured. The root zone was divided into three layers—top, middle, and bottom (≈3 cm each). Roots were separated from each soil layer and soil samples collected for measuring EC and pH using 1:2 dilution. Soil samples showed EC in the top layer of the root zone was much higher than the middle and bottom layers. Root weight also decreased substantially in the top layer of the root zone. Height, FW, DW, and leaf area of plants did decrease with increasing salt concentration, indicating that the detrimental effects of poor-quality water on subsequent plant growth, especially in a subirrigation system.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 13 1
PDF Downloads 70 31 2