THE EFFECTS OF MECHANICAL CONDITIONING ON FIELD PERFORMANCE OF TOMATO TRANSPLANTS

in HortScience
View More View Less
  • 1 Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456

Stretching is a problem in high-density transplant production. Mechanical conditioning provides good height control for many crops, but there may be adverse effects on field performance. Mechanical conditioning was applied to processing tomatoes (Ohio 8245) grown in #288-deep flats (=2000 plants/m2) using two methods, brushing and impendance. Brushing was applied by gently stroking the plant canopy with a Styrofoam planter flat 20 times back and forth every morning. The impeded plant canopy was compressed slightly by apiece of Plexiglas suspended overnight. The treatments were applied from canopy closure until transplanting to the field. At transplanting, brushed plants were 31% (1993) and 12% (1994) shorter than control plants, and impeded plants were 25% (1993) and 24% (1994) shorter than control plants. In both years, the caliper of impeded transplants was significantly larger than that of both the control and brushed plants. There was also no reduction in dry weight and no noticeable difference in plant quality between treatments. The treatments did not affect the speed at which the plants recovered from transplant shock or the rate at which they grew in the field. Within 5 weeks after transplanting, there were no significant differences between treatments in biomass, leaf area estimates, stem caliper, flowering, early set, or field yield, despite differences in size at transplanting. Therefore, both brushing and impendance result in sturdy, high-quality transplants without adversely affecting establishment or yield.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 9 1
PDF Downloads 77 35 2