The biosynthetic pathway for anthocyanins has been studied using genetic, biochemical and molecular biological tools. In the past decade, the core pathway genes have been cloned; a number of genes which act to modify anthocyanin structure have been cloned more recently. The first results in color modification have been reduced flower color intensity using gene suppression methods. In particular, we have utilized chalcone synthase (CHS) and dihydroflavonol reductase (DFR) genes and sense suppression in our experimental system, Petunia hybrida, and in the commercial crops, chrysan-themum (Dendranthema morifolium) and rose (Rosa hybrida). In petunia a range of new phenotypes was obtained; genetic stability of suppressed pheno-types will be described. In chrysanthemum a white-flowering derivative of a pink-flowering variety will be described. In rose uniform, partial reduction in pigment intensity throughout the flower was observed in over a dozen trans-genie derivatives of a red-flowering variety.