in HortScience
View More View Less
  • 1 Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universita di Udine, 33100 Udine, Italy,
  • | 2 Istituto di Coltivazioni Arboree, Universita di Bologna, 40126 Bologna, Italy.

ABA implication in root signals of water stress has been suggested by several authors. To verify this hypothesis in grapevines, this experiment has been carried out. One-year-old own rooted cuttings of grapevine cultivar Cabernet Sauvignon were exposed to water stress. After three months of growth, water was completely withdrawn for nine days, till the plants reached the wilting point. The plants were then rewatered. During the whole period, root hydraulic conductivity was measured with a pressure bomb; xylem sap samples were collected, as well as leaf and root samples. ABA concentration in these samples was measured using Radio Immuno Assay with DBPA1, a monoclonal antibody for ABA. The concentration of xylem sap ABA was 68.2 mg m-3 at the start of the experiment. After eight days of stress it was 1863.6 mg m-3, 27 × higher. On the ninth day the plants were rewatered, and the xylem sap ABA decreased at 100.2 mg m-3, keeping this level for eight more days. Leaf ABA showed high levels of this inhibitor, with a peak in correspondence with the maximum stress. A similar behaviour was attained by roots. In grapevine, ABA seems to be involved in a water stress root signal directed to the canopy.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 8 2
PDF Downloads 79 33 1