in HortScience
View More View Less
  • 1 1Dept. of Hort. Sci., University of Minnesota St. Paul, MN 55108
  • | 2 2Dept. of Agronomy and Soils, University of Puerto Rico, Mayaguez. PR 00708

184 random F2 plants from a high temperature (HT) sensitive X HT tolerant snap bean cross were advanced to the F5 by single seed descent. At anthesis and after HT pre-treatment, all plants in each generation were evaluated in the laboratory for leaf ethylene evolution (EE), % viable pollen (VP), and leaf cell membrane thermostability (CMT). Population means among generations differed significantly for VP and CMT in a paired t-test, while EE means in the F3, F4, and F5 were similar. Correlations among traits were very low (≤.25) with a consistent negative correlation between VP and the others (high VP is a positive trait while low EE and CMT are considered positive). VP and total pollen were highly correlated (r≤.81). To determine if the 3 traits might predict HT tolerance in the field, F5-derived F6 lines were grown at Becker, MN (control), and Isabella, PR (HT environment). Yield component data were collected at both locations. Tolerance may be computed as % yield of the lines in the HT vs. the control environment for any or all of the yield components. Regression analysis showed a very low r2 (≤.16) when EE, VT, and CMT were used to predict tolerance as estimated by pod production. However, as expected, the F5 best predicted F6 performance. Further results from Minnesota field and greenhouse and from Puerto Rico field data will be discussed.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 0
PDF Downloads 8 8 3