in HortScience
View More View Less
  • 1 NASA, Ames Research Center, Advanced Life Support Division, Moffett Field, CA.

Electronic dimming of high intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400 W metal halide (MH) and high pressure sodium (HPS) lamps were equipped with a dimmer system using silicon controlled rectifiers (SCR) as high speed switches. Phase control operation turned the line power off for some period of the AC cycle. At full power the electrical input to HPS and MH lamps was 480 W (RMS) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased the 589 nm peak remained constant while the 595 nm peak decreased, equalling the 589 nm peak at 345 W input, and was almost absent at 270 W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another, smaller peak, at 545 nm. As input power to the MH lamps decreased the 589 nm peak diminished to equal the 545 nm peak. As input power approached 428 W the 589 nm peak shifted to 570 nm. While a spectral change was observed as input power was decreased in both MH and HPS lamps, the phytochrome equilibrium ratio (Pfr/Ptot) remain unchanged for both lamp types.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 15 1
PDF Downloads 107 35 0