LEAF ANATOMY OF MICROPROPAGATED GRAPE AFFECTED BY REDUCED WATER POTENTIAL

in HortScience

Grape cv. Valiant was micropropagated in an MS medium with and without 2% (W/V) of polyethylene glycol (PEG, MW 8000). Leaf anatomy of control (in vitro, no PEG), treated (in vitro, PEG), field grown and greenhouse grown plants were compared under light microscopy. Cell size, palisade layer formation, relative intercellular air space and apparent chloroplast number varied between the leaves of control and PEG treated (high osmoticum) plantlets. These leaf characteristics in the high osmoticum medium appeared more similar to the leaves of the greenhouse and field grown plants. Leaves from control plantlets contained cells of larger size, lacked normal palisade layer formation, greater intercellular pore spaces and fewer chloroplasts. Leaves of PEG treated plantlets had smaller cells, a more defined palisade layer, reduced intercellular pore spaces and greater number of chloroplasts. Leaves of greenhouse and field grown plants had small cells, a well-defined palisade layer, least intercellular pore space and greatest number of chloroplasts. These results demonstrate that a high osmoticum medium may be used to induce more normal leaf development.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 9 0
PDF Downloads 69 61 1