in HortScience
View More View Less
  • 1 Department of Horticulture. University of Georgia. Athens, GA 30602

As a result of long-term application, some fungicides may accumulate in the soil to levels that can affect soil N transformations and plant growth. Studies were initiated to compare benomyl, captan, and lime-sulfur fungicides with the biological nitrification inhibitors (NI) nitrapyrin and terrazole for their effects on biological nitrification and denitrification, and tomato (Lycopersicon esculentum Mill.) growth and N uptake. In laboratory studies, inhibition of nitrification was less than 5% in a Tifton l.s. soil incubated with 10 μg g -1 a.i. of benomyl but was about 51%, 72%, and more than 85% when amended with lime-sulfur, captan, and NI, respectively. Similarly, increased inhibitory effects on denitrification of NO3 were obtained in a liquid media incubated anaerobically with either NI (37%) than captan or lime-sulfur (25%) while benomyl had no significant effect. In greenhouse studies with tomato plants, weekly drench applications of 0.25 μg a.i. g -1 soil of the appropriate chemical for 4 weeks with three NH4:NO3 ratios showed that the NI and captan produced the greatest plant biomass and N uptake, but benomyl and lime-sulfur had no main effect while all fungicides interacted with the N ratio to affect plant growth and N uptake.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 9 0
PDF Downloads 51 20 1