Quality Changes in Asparagus Spears Stored in a Flow-through CA System or in Consumer Packages

Lawford Baxter and Luther Waters, Jr.
Department of Horticultural Sciences and Landscape Architecture, University of Minnesota, St. Paul, MN 55108

Additional index words. Asparagus officinalis, sugars, organic acid, protein, consumer packaging

Abstract. Asparagus spears (Asparagus officinalis L.) stored 28 days at 2°C in air, a flow-through controlled-atmosphere (CA) system, or 14 days in polymeric film consumer packages were evaluated in respect to compositional and quality changes. CA-stored spears retained more sugars, organic acids, and soluble proteins than spears stored in air. Spears stored in vented consumer packages had a useful life of 14 days, whereas those in nonvented packages started to break down after 8 days. Spears from vented packages lost more weight but retained more sugars and organic acids than those from nonvented packages.

Rapid cooling of asparagus spears and storage at near-freezing temperatures are used to commercially maintain asparagus quality. Early reports (Baker and Morris, 1936) indicate that modified atmospheres are beneficial in reducing postharvest asparagus deterioration. Controlled-atmosphere storage of asparagus prevented the development of off-flavor (Kenkars, 1965), water loss (King et al., 1986), toughening (Lougheed and Dewey, 1966), and chlorophyll loss (Wang et al., 1971). CA effects on vitamin C content in asparagus depend on the atmosphere composition (Weichmann, 1986). Despite limited commercial distribution of asparagus under CA, metabolic aspects of CA effects on asparagus tissue are not well-documented.

Asparagus packaging in gas-barrier films is another area that has not been fully explored. Work with other commodities has indicated that retail packaging using gas-barrier films has potential for maintaining quality and extending shelf-life (Ben-Yehoshua, 1985). Distribution of fresh vegetables in polymeric-film packages helps to maintain quality by a combination of atmosphere modification and reduced water loss (Gorini, 1987). This paper presents the results of studies examining changes in asparagus spears stored in air, flow-through CA, and consumer packages.

Fig. 1. Changes in O₂ and CO₂ levels in nonvented film packages containing 340 g of asparagus spears at 2°C.
by bubbling the gas through water before entry into the chamber. Flow meters, solenoid valves, timers, and a pressure-relief valve controlled gas flow into the cabinet and provided for one complete gas change each 16 h. Control spears were stored at the same temperature (2°C), humidity (≈92%), and gas turnover rate in air scrubbed free of ethylene. A slow gas flow-rate was necessary to prevent dehydration of the spears. Oxygen and CO₂ levels were routinely measured with Fyrite analyzers until CO₂ the packages were analyzed with Fyrite analyzers (approx. 10°C for 14 days. Headspace gases within the packages were analyzed with Pefrite analyzers according to Bradford (1976). Total N was determined on 100 mg of the freeze-dried powder using the Kjeldahl method (Assn. of Official Anal. Chemists, 1975) and crude protein calculated as percent N × 6.25.

For the consumer packages, two polymeric films (V820 and V822; Cryovac, Duncan, S. C.) were made into packages 25 × 20 × 3.5 cm (L × W × H). Film V820 had O₂ and CO₂ transmission rates of (per 24 h) 0.2 ml·m⁻²·h⁻¹ and 1 ml·m⁻²·h⁻¹, respectively. The transmission rates for V822 were (per 24 h) 2200 ml·m⁻² for O₂ and 11,200 ml·m⁻² for CO₂ (film permeability measured at 21°C, 1 × 10⁵ Pa, 100% O₂, and 0% RH by Cryovac). A 2-mm-diameter punch was used to perforate the packages so that either 0%, 1%, 2.5%, 5%, or 7.5% of the total surface area of each package was ventilated. About 340 g of hydrocooled spears was placed in each package along with a wet paper pad to maintain the humidity. The packages were sealed with a Scotchpak pouch sealer (Kapak Corp., Bloomingtom, Minn.) and stored at 2 ± 1°C for 14 days. Headspace gases within the packages were analyzed with Pefrite analyzers until CO₂ and O₂ concentrations leveled off (Fig. 1). Gas sampling was done through septa glued to the side of the packages. At the end of storage, all samples were weighed and sensory evaluation (Table 1) carried out using a three-member panel. Sugar and soluble protein were determined as described above. The experiment was a 2 × 5 factorial in a completely randomized design with four replications, each replication consisting of one package. Data analysis was by an analysis of variance procedure.

Flow-through CA study. Flow-through CA study throughput the sugar and organic acid contents of both air-stored and CA spears declined during storage, both tended to remain higher in CA than in air-stored spears (Figs. 2 and 3). Significant differences in sugar content generally occurred during the 3rd week of storage. Fructose de-
Fig. 3. Changes in malic acid (A) and citric acid (B) of asparagus spears stored in air or 5% O₂ + 10% CO₂. Points represent the means of nine observations. Vertical bars represent ± se and are not shown when smaller than symbols.

Fig. 4. Changes in soluble protein (A) and free amino acids (B) of asparagus spears stored in air or 5% O₂ + 10% CO₂. Points represent the means of nine observations. Vertical bars represent ± se and are not shown when smaller than symbols.

Table 1. Film type (V820 and V822) and degree of package venting effects on quality, weight loss, sugar, and protein content of asparagus spears stored 14 days at 2°C.

<table>
<thead>
<tr>
<th>Film type</th>
<th>Venting (%)</th>
<th>Color (rating)*</th>
<th>Odor (rating)*</th>
<th>Breakdown (rating)*</th>
<th>Wt loss (%)</th>
<th>Sugar concn (%)</th>
<th>Protein concn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>22.3</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>41.0</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>84.0</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>82.5</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>81.0</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>V822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>32.0</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>63.5</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>85.0</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>84.0</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>84.0</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

Source: df = MS = MS = MS = MS = MS

Film type: 1 = 0.44*** 4.8** 0.01** 13.2** 169.9* 357**
Venting: 4 = 15.78* 41.1* 39.8* 80.77* 5009.8* 62.8*
Film × vent: 4 = 0.40*** 2.01** 0.01* 11.77** 157.0** 11.21*
Error: 30 = 0.06 0.09 0.01 0.42 6.1 3.20

*Scale 0 = Color at harvest to 5 = yellow to brown.
**Scale 0 = Normal odor to 5 = highly objectionable odor.
*NS, * Significant at P < 0.05, respectively.

clined most for air-stored spears, whereas sucrose declined most in CA-stored spears. Greater retention of sugars and organic acids in CA-stored compared to air-stored spears indicates a general impairment of glycolytic and tricarboxylic cycle reactions.

Beginning with the 1st storage week, significant differences (P < 0.05) were observed between the soluble protein content in air-stored and CA-stored spears (Fig. 4A), with CA-stored spears retaining more protein. Free amino acids declined about equally under both storage regimes (Fig. 4B). Expressed on a dry-weight basis, the crude protein content showed a slight increase for CA- and air-stored spears (data not shown), most likely due to carbohydrate loss through respiration and microbial decomposition, and is similar to results for leeks (Kurki, 1979). Microbial decomposition of the spears was most evident at the tips and occurred to a greater extent in air-stored than in CA-stored spears. Erwinia was identified as the causal agent. Oxygen concentrations in the range used have little effect on Erwinia rot, but high CO₂ levels retarded development of bacterial soft rot (Lipton, 1965). CA-stored spears had tightly closed tips that may have offered some resistance to pathogen invasion. Asparagus spears with tightly closed tips are less susceptible to microbial decay than those with tips that are “feathered” (Lipton, 1968). Loss of protein and amino acids in CA- and air-stored spears is probably due to metabolic turnover of nitrogenous compounds within the tissue.

Consumer package study. Variable results were obtained from the consumer packaging study. When the packages were not ventilated, severe spear breakdown occurred, evidenced by sliminess of the tips and development of a putrid odor and browning (Table 1). Since there was no evidence of microbial growth, the putrid odor and general breakdown were probably due to anaerobic respiration, low O₂, or high CO₂ injury. Spear breakdown occurred only in nonvented packages; in some of these packages, O₂ content was as low as 2% and CO₂ content as high as 25% after 40 h of storage (Fig. 1). Spear quality was the best in packages with 2.5% and 5.0% of the surface area vented for V822 and V820, respectively. Although venting improved quality, weight loss was increased.

Sugar and soluble protein levels were also affected by the degree of package venting (Table 1). Retention of sugars and protein was lower in nonvented than in vented packages regardless of film type.

The use of O₂/CO₂/H₂O barrier films has potential for CA packaging of perishable horticultural commodities. However, the films used in the present study were not effective in maintaining the fresh quality of the asparagus without venting. The low O₂ and high CO₂ levels of nonvented packages indicated that the gas-transmission properties of both films did not match the respiration rate of the asparagus. Recently, breathable
films with permeability characteristics that can match the respiration rates of many vegetables have been developed (Antoon, 1989). It would be of interest to evaluate the quality of asparagus stored with these materials.

Literature Cited

