DOES CHRYSANTHEMUM DISPLAY AN ENDOGENOUS CIRCADIAN RHYTHM OF STEM ELONGATION?

in HortScience
View More View Less
  • 1 Acadia University, Wolfville, N.S., Canada BOP 1X0

The rate of internodal extension of chrysanthemum (Dendranthema grandiflora Tzvelev. cv. Envy) under various temperature and photoperiod conditions was studied to determine whether reproducible diurnal patterns of growth existed and whether any such patterns conformed to an endogenous circadian rhythm. Stem growth was monitored continuously by means of linear displacement voltage transducers. At constant temperature and under 11 h light/13 h dark photoperiod, stem elongation followed a clearly defined pattern consisting of a peak in rate immediately after the dark to light transition and then a gradual decline until the start of the dark period. During darkness, elongation rate increased and reached a maximum approximately 8 hours after the light to dark transition. This pattern differed when light period temperature was either above or below dark period temperature, but these patterns were also highly reproducible. When plants were subjected to continuous light at constant temperature, the rhythm of stem elongation initially showed a periodicity of approximately 27 hours. After 2 or 3 diurnal cycles the rhythm was less distinct and the rate became essentially constant. Furthermore, the interruption of a long period of continuous light with a 13 h dark period did not restore the rhythm. These findings do not support the existence of an endogenous circadian rhythm of stem elongation. Diurnally-cued rhythms do, however, exist and can be modified by temperature.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 7 1
PDF Downloads 65 31 8