MAXIMIZING WATER USE EFFICIENCY OF EVAPORATIVE COOLING SYSTEMS USED TO DELAY GRAPE BUDBREAK

in HortScience
View More View Less
  • 1 Texas Agricultural Experiment Station, Lubbock, TX 79401

Mild temperatures during late winter have caused early budbreak in grapes which resulted in freeze injury and significant crop losses in 1980 and 1988. Evaporative cooling of grapevines with microsprinklers when the air temperature exceeded 10 °C (50 °F) used 100 liters/min/hectare of treated grapes (11 gallons/min/acre) and delayed budbreak for a period of 7 to 10 days. Methods of reducing the amount of water used while not reducing the cooling were evaluated. The average hourly difference between wet and dry bud temperatures, measured with thermocouples, were summed during the system operation time and compared as a function of air temperature, wind speed, global radiation, and relative humidity limits. Limiting the cooling system operation time as a function of air temperature, wind speed, or global radiation reduced cooling efficiency by approximately a one to one ratio. Limiting system operation to humidities less than 60% reduced the amount of water used by 33%, with only a 9% reduction in cooling efficiency. By changing the wetting interval employed in this research from 25 seconds every three minutes to 25 seconds every four minutes, total water conservation would increase to 50% with insignificant changes in cooling efficiencies. These system modifications would reduce water application requirements to 50 liters/min/hectare of grapes (5.5 gallons/minute/acre).

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 7 0
PDF Downloads 31 8 0