The response of pear fruits and suspension-cultured pear fruit cells to 0% or 0.25% O2 is being examined to evaluate the feasibility of using such atmospheres for postharvest insect control. These treatments inhibited ethylene production, had no effect on acetaldehyde content, and increased ethanol production in pears kept at 20C for 10 days. The blossom end area of pear fruits was more prone to anaerobiosis, as indicated by increased alcohol dehydrogenase activity and ethanol content. Pear fruit plugs showed increased respiration and ethylene production rates when skin was present compared to plugs without skin. Methods for measuring activity of alcohol dehydrogenase, pyruvate decarboxylase, and pyruvate kinase have been modified and optimized and will be used to determine changes in pear fruit tissue during low O2 treatment and subsequent recovery in air.