Effects of 6-Benzyladenine, γ-Aminobutyric Acid, and Nitric Oxide on Plant Growth, Photochemical Efficiency, and Ion Accumulation of Perennial Ryegrass Cultivars to Salinity Stress

in HortScience

Plant growth regulators (PGRs) can mediate plant response to salinity stress. Perennial ryegrass (Lolium perenne) cultivars of BrightStar SLT, Catalina, Inspire, and SR4660ST were exposed to 0, 100, or 200 mm NaCl for 14 d. 6-benzyladenine (6-BA, 10 µm), γ-aminobutyric acid (GABA, 500 µm), nitric oxide (NO, 200 µm), and H2O were applied to the foliage every day for 3 days before stress and then every 2 days during salinity stress. Averaged across the four cultivars, a foliar spray of NO increased leaf fresh weight (FW) and dry weight (DW) at 0 mm NaCl, whereas application of 6-BA increased DW and GABA reduced Na+ concentration at 100 mm NaCl, compared with H2O application. Plants treated with 6-BA, GABA, and NO had less chlorotic and necrotic leaf tissue than plants treated with H2O at 200 mm NaCl. Spray of 6-BA and NO increased FW and DW, but application of all three PGRs maintained higher leaf photochemical efficiency and lower leaf Na+ concentration compared with H2O treatment at 200 mm NaCl. Across salinity and PGR treatments, ‘Catalina’ exhibited higher plant height than the ‘Inspire’ and SR4660ST, and SR4660ST had relatively higher Na+ concentration than ‘Catalina’ but not ‘BrightStar SLT’ and ‘Inspire’. The results demonstrate that 6-BA, GABA, and NO ameliorated salinity tolerance of perennial ryegrass by improving growth and photochemical efficiency or reducing Na+ accumulation.

Contributor Notes

This research is supported by the Midwest Regional Turfgrass Foundation of Purdue University.

Current address: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824.

Corresponding author. E-mail: yjiang@purdue.edu.

Article Sections

Article Figures

  • View in gallery

    Appearance of perennial ryegrass cultivars sprayed with water, 6-benzyladenine (6-BA, 10 µm), γ-aminobutyric acid (GABA, 500 µm), and nitric oxide (NO, 200 µm) at 14 d of 200 mm NaCl.

Article References

  • AhmadP.LatefA.A.HashemA.Abd AllahE.F.GucelS.TranL-S.P.2016Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpeaFront. Plant Sci.7347

    • Search Google Scholar
    • Export Citation
  • AzadiA.HervanE.M.MohammadiS.A.MoradiF.NakhodaB.VahabzadeM.MardiM.2011Screening of recombinant inbred lines for salinity tolerance in bread wheat (Triticum aestivum L.)Afr. J. Biotechnol.101287512881

    • Search Google Scholar
    • Export Citation
  • ChampagnolF.1979Relationships between phosphate nutrition of plants and salt toxicityPhosphorus Agr.763543

  • ChoiJ.HwangI.2007Cytokinin: Perception, signal transduction, and role in plant growth and developmentJ. Plant Biol.5098108

  • FageriaN.K.1985Salt tolerance of rice cultivarsPlant Soil88237243

  • FatmaM.MasoodA.PerT.S.KhanN.A.2016Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustardFront. Plant Sci.7521

    • Search Google Scholar
    • Export Citation
  • FreschiL.2013Nitric oxide and phytohormone interactions: Current status and perspectivesFront. Plant Sci.4398

  • GhanemM.E.AlbaceteA.SmigockiA.C.FrébortI.PospíšilováH.Martínez-AndújarC.AcostaM.Sánchez-BravoJ.LuttsS.DoddI.C.Pérez-AlfoceaF.2011Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plantsJ. Expt. Bot.62125140

    • Search Google Scholar
    • Export Citation
  • GrattanS.R.GrieveC.M.1999Salinity-mineral nutrient relations in horticulture cropsScientia Hort.78127157

  • HarivandiM.A.ButlerJ.D.WuL.1992Salinity and turfgrass cultureTurfgrass.32207229

  • KhanM.N.SiddiquiM.H.MohammadF.NaeemM.2012Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stressNitric Oxide27210218

    • Search Google Scholar
    • Export Citation
  • KinnersleyA.M.TuranoF.J.2000Gamma aminobutyric acid (GABA) and plant responses to stressCrit. Rev. Plant Sci.19479509

  • KongX.WangT.LiW.TangW.ZhangD.DongH.2016Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.)Acta Physiol. Plant.3861

    • Search Google Scholar
    • Export Citation
  • KopyraM.GwóźdźE.A.2003Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of lupinus luteusPlant Physiol. Biochem.4110111017

    • Search Google Scholar
    • Export Citation
  • LiM.GuoS.YangX.MengQ.WeiX.2016Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymesBiol. Plant.60123131

    • Search Google Scholar
    • Export Citation
  • LiuA.FanJ.GitauM.M.ChenL.FuJ.2016Nitric oxide involvement in bermudagrass response to salt stressJ. Amer. Soc. Hort. Sci.141425433

  • LiuF.GuoF.2013Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in ArabidopsisPLoS One8e56345

    • Search Google Scholar
    • Export Citation
  • MaW.SmigelA.WalkerR.K.MoederW.YoshiokaK.BerkowitzG.A.2010Leaf senescence signaling: The Ca2+-conducting Arabidopsis cyclic nucleotide gated channel 2 acts through nitric oxide to repress senescence programmingPlant Physiol.154733743

    • Search Google Scholar
    • Export Citation
  • MaX.ZhangJ.HuangB.2016Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balanceEnviron. Exp. Bot.125111

    • Search Google Scholar
    • Export Citation
  • MaricleB.R.LeeR.W.HellquistC.E.KiiratsO.EdwardsG.E.2007Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grassesPhotosynthetica45433440

    • Search Google Scholar
    • Export Citation
  • McSteenP.ZhaoY.2008Plant hormones and signaling: Common themes and new developmentsDev. Cell15467473

  • MichaeliS.FrommH.2015Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined?Front. Plant Sci.6419

  • MunnsR.TesterM.2008Mechanisms of salinity toleranceAnnu. Rev. Plant Biol.59651681

  • NematiI.MoradiF.GholizadehS.EsmaeiliM.BihamtaM.2011The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlingsPlant Soil Environ.572633

    • Search Google Scholar
    • Export Citation
  • PariharP.SinghS.SinghR.SinghV.P.PrasadS.M.2015Effect of salinity stress on plants and its tolerance strategies: A reviewEnviron. Sci. Pollut. Res. Intl.2240564075

    • Search Google Scholar
    • Export Citation
  • SharpleyA.MeisingerJ.PowerJ.SuarezD.1992Root extraction of nutrients associated with long-term soil management p. 151–217. In: J. Stewart (ed.). Advances in soil science. Springer New York

  • ShiH.-T.LiR.-J.CaiW.LiuW.WangC.-L.LuY.-T.2011Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerancePlant Cell Physiol.53344357

    • Search Google Scholar
    • Export Citation
  • SongX.WangS.-M.JiangY.2017Genotypic variations in plant growth and nutritional elements of perennial ryegrass accessions under salinity stressJ. Amer. Soc. Hort. Sci.142476483

    • Search Google Scholar
    • Export Citation
  • TalbiZ.O.AbdellyC.DebezA.2011Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.)Plant Biol.13872880

    • Search Google Scholar
    • Export Citation
  • TangJ.CamberatoJ.J.YuX.LuoN.BianS.JiangY.2013aGrowth response, carbohydrate and ion accumulation of diverse perennial ryegrass accessions to increasing salinityScientia Hort.1547381

    • Search Google Scholar
    • Export Citation
  • TangJ.YuX.LuoN.XiaoF.CamberatoJ.J.JiangY.2013bNatural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessionsPlant Cell Environ.3620212033

    • Search Google Scholar
    • Export Citation
  • UpretiK.K.SharmaM.2016Role of plant growth regulators in abiotic stress tolerance p. 19–46. In: N. Rao S. Shivashankara and R. Laxman (eds.). Abiotic stress physiology of horticultural crops. Springer New Delhi India

  • WangY.GuW.MengY.XieT.LiL.LiJ.WeiS.2017γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving hotosynthesis and upregulating osmoprotectants and antioxidantsSci. Rep.743609

    • Search Google Scholar
    • Export Citation
  • WuX.HeJ.ChenJ.YangS.ZhaD.2014Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stressProtoplasma251169176

    • Search Google Scholar
    • Export Citation
  • YinX.ZhangC.SongX.JiangY.2017Interactive short-term effects of waterlogging and salinity stress on growth and carbohydrate, lipid peroxidation, and nutrients in two perennial ryegrass cultivarsJ. Amer. Soc. Hort. Sci.142110118

    • Search Google Scholar
    • Export Citation
  • ZhangY.WangL.LiuY.ZhangQ.WeiQ.ZhangW.2006Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplastPlanta224545555

    • Search Google Scholar
    • Export Citation
  • ZhaoL.ZhangF.GuoJ.YangY.LiB.ZhangL.2004Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reedPlant Physiol.134849857

    • Search Google Scholar
    • Export Citation
  • ZiogasV.TanouG.BelghaziM.DiamantidisG.MolassiotisA.2017Characterization of β-amino-and γ-amino butyric acid-induced citrus seeds germination under salinity using nanolc–MS/MS analysisPlant Cell Rep.36787789

    • Search Google Scholar
    • Export Citation

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 40 40 40
Full Text Views 6 6 6
PDF Downloads 4 4 4