Micropropagation of Banana: Reversion, Rooting, and Acclimatization of Hyperhydric Shoots

in HortScience

Hyperhydricity is a physiological disorder impacting plant growth and multiplication and acclimatization of regenerated plantlets. We report the use of calcium nitrate for reversion and acclimatization of banana ‘Grand Naine’ hyperhydric shoots cultured on Murashige and Skoog medium containing agar or gellan. Although 100% rooting of hyperhydric shoots occurred at all concentrations of calcium nitrate, only 50% rooting was recorded in the absence of calcium nitrate. Electrolyte leakage decreased significantly in the reverted banana tissues compared with the hyperhydric tissues. Histochemical staining for reactive oxygen species indicated that reverted banana tissues possess lower levels of both hydrogen peroxide (H2O2) and superoxide (O2-) than do hyperhydric tissues. Rooting, growth, and survival of the reverted banana plantlets were significantly influenced by calcium nitrate concentrations as well as the type of gelling agent. Reverted banana plantlets in medium containing calcium nitrate (0.5–1 g·L−1) were acclimatized with 100% survival in a growing substrate of peatmoss and vermiculite (1:1).

Contributor Notes

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RGP-1438-012), and the Research Support & Services Unit (RSSU) for their technical support.

Corresponding author. E-mail: ydewir@hotmail.com or ydewir@ksu.edu.sa.

Article Sections

Article Figures

  • View in gallery

    Reversion, rooting and acclimatization of hyperhydric banana ‘Grand Naine’ shoots. (A) Normal multiple shoots from the fourth subculture in Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (3 mg·L−1) and Kinetin (1 mg·L−1). (B) Hyperhydric shoots obtained from the fourth subculture. (C) In vitro reversion and rooting of the hyperhydric shoots in agar (8 g·L−1)-solidified MS medium supplemented with calcium nitrate (0.5 g·L−1) after 3 weeks in culture. (D) Reverted plantlets after 4 weeks of acclimatization.

  • View in gallery

    Scanning electron microscopy of stomata in the leaves of banana ‘Grand Naine’ shoots after 3 weeks in culture. (A and B) Normal and hyperhydric shoots [fourth subculture in MS medium supplemented with 6-benzylaminopurine (3 mg·L−1) and kinetin (1 mg·L−1)]. (C) Reverted shoots [cultured in agar (8 g·L−1)-solidified MS medium supplemented with calcium nitrate (0.5 g·L−1)].

  • View in gallery

    Histochemical analysis of reactive oxygen species in the leaves of normal, hyperhydric, and reverted banana ‘Grand Naine’ shoots after 3 weeks in culture. (A) Superoxide and (B) hydrogen peroxide.

  • View in gallery

    Quantification of reactive oxygen species in the leaves of normal, hyperhydric, and reverted banana ‘Grand Naine’ shoots after 3 weeks in culture. (A) Superoxide and (B) hydrogen peroxide.

  • View in gallery

    Electrolyte leakage in the leaves of normal, hyperhydric, and reverted banana ‘Grand Naine’ shoots after 3 weeks in culture.

Article References

  • ÁdámA.FarkasT.SomlyaiG.HevesiM.KirályZ.1989Consequence of O2generation during a bacterially induced hypersensitive reaction in tobacco: Deterioration of membrane lipidsPhysiol. Mol. Plant Pathol.341326

    • Search Google Scholar
    • Export Citation
  • AndarwulanN.ShettyK.1999Influence of acetyl salicylic acid in combination with fish protein hydrolysates on hyperhydricity reduction and phenolic synthesis in oregano (Origanum vulgare) tissue culturesJ. Food Biochem.23619635

    • Search Google Scholar
    • Export Citation
  • ApóstoloN.M.LlorenteB.E.2000Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinensis (Link) SchnIn Vitro Cell. Dev. Biol. Plant36243249

    • Search Google Scholar
    • Export Citation
  • BairuM.W.StirkW.A.DolezalK.Van StadenJ.2007Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin?Plant Cell Tissue Organ Cult.901523

    • Search Google Scholar
    • Export Citation
  • BairuM.W.StirkW.A.DolezalK.Van StadenJ.2008The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA)Plant Cell Tissue Organ Cult.95373379

    • Search Google Scholar
    • Export Citation
  • BalenB.TkalecM.PavokovicD.Pevalek-KozlinaB.Krsnik-RasolM.2009Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissuesJ. Plant Growth Regul.283645

    • Search Google Scholar
    • Export Citation
  • BarbosaL.M.P.de Paiva NetoV.B.DiasL.L.C.Festucci-BuselliR.A.AlexandreR.S.IaremaL.FingerF.L.OtoniW.C.2013Biochemical and morpho-anatomical analyses of strawberry vitroplants hyperhydric tissues affected by BA and gelling agentsRev. Ceres60152160

    • Search Google Scholar
    • Export Citation
  • BuahJ.N.KawamitsuY.SatoS.MurayamaS.1999Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitroPlant Prod. Sci.2138145

    • Search Google Scholar
    • Export Citation
  • CameronS.I.2001Use of a prototype gel hardness tester to demonstrate the effect of variable calcium concentration of gel rigidityIn Vitro Cell. Dev. Biol. Plant37419424

    • Search Google Scholar
    • Export Citation
  • ChakrabartyD.DattaS.K.2008Micropropagation of gerbera: Lipid peroxidation and antioxidant enzymes activities during acclimatization processActa Physiol. Plant.30325331

    • Search Google Scholar
    • Export Citation
  • ChakrabartyD.ParkS.Y.AliM.B.ShinK.S.PaekK.Y.2006Hyperhydricity in apple: Ultrastuctural and physiological aspectsTree Physiol.26377388

    • Search Google Scholar
    • Export Citation
  • ChenJ.ZivM.2001The effect of ancymidol on hyperhydricity, regeneration, starch and antioxidant enzymatic activities in liquid-cultured NarcissusPlant Cell Rep.202227

    • Search Google Scholar
    • Export Citation
  • De KlerkG.-J.M.van den DriesN.KrensF.A.2017Hyperhydricity: Underlying mechanismsActa Hort.1155269276

  • DeberghP.AitkencrhistieJ.CohenD.GroutB.Von ArnoldS.ZimmermanR.ZivM.1992Reconsideration of the term vitrification as used in micropropagationPlant Cell Tissue Organ Cult.30135140

    • Search Google Scholar
    • Export Citation
  • DeepikaC.BasantiB.SinghD.J.SubhashK.AnilP.2018An insight into in vitro micropropagation studies for banana- ReviewIntl. J. Agr. Sci.1053465349

    • Search Google Scholar
    • Export Citation
  • DewirY.H.2005Ornamental Euphorbia and Spathiphyllum: Application of bioreactor system and microponics for large-scale production in vitro flowering and its physiology. Ph.D. dissertation Chungbuk National University South Korea

  • DewirY.H.ChakrabartyD.HahnE.J.PaekK.Y.2005Reversion of inflorescence in Euphorbia milii and its application to large scale micropropagation in an air-lift bioreactorJ. Hort. Sci. Biotechnol.80581587

    • Search Google Scholar
    • Export Citation
  • DewirY.H.ChakrabartyD.AliM.B.HahnE.J.PaekK.Y.2006Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shootsEnviron. Exp. Bot.589399

    • Search Google Scholar
    • Export Citation
  • DewirY.H.El-MahroukM.E.HafezY.M.RihanH.Z.SáezC.A.FullerM.P.2015aAntioxidative capacity and electrolyte leakage in healthy versus phytoplasma infected tissues of Euphorbia coerulescens and Orbea giganteaJ. Plant Physiol. Pathol.31doi: 10.4172/2329-955X.1000139

    • Search Google Scholar
    • Export Citation
  • DewirY.H.El-MahroukM.E.HafezY.M.Teixeira da SilvaJ.A.NaidooY.2015bHyperhydricity in African violet (Saintpaulia ionantha H. Wendl)-biochemical aspects of normal versus hyperhydric shoots regenerated via direct adventitious shoots formationPropag. Ornam. Plants155362

    • Search Google Scholar
    • Export Citation
  • DewirY.H.NurmansyahNaidooY.Teixeira da SilvaJ.A.2018Thidiazuron-induced abnormalities in plant tissue culturesPlant Cell Rep3714511470

    • Search Google Scholar
    • Export Citation
  • DewirY.H.IndoliyaY.ChakrabartyD.PaekK.Y.2014Biochemical and physiological aspects of hyperhydricity in liquid culture system p. 693–703. In: K.Y. Paek H.N. Murthy and J.J. Zhong (eds.). Production of biomass and bioactive compounds using bioreactor technology. Springer Berlin

  • EscalonaM.CejasI.Gonzalez-OlmedoJ.CapoteI.RoelsS.CanalM.J.RodriguezR.SandovalJ.DeberghP.2003The effect of meta-topolin on plantain propagation using a temporary immersion bioreactorInfoMusa122830

    • Search Google Scholar
    • Export Citation
  • FAOSTAT2017<http://www.fao.org/faostat/en/#data/QC>

  • FontesM.A.OtoniW.C.CarolinoS.M.B.BrommonschenkelS.H.FontesE.P.B.FariM.LouroR.P.1999Hyperhydricity in pepper plants regenerative in vitro: Involvement of BiP (Binding Protein) and ultrastructural aspectsPlant Cell Rep.198187

    • Search Google Scholar
    • Export Citation
  • FoyerC.H.LelandaisM.KunertK.J.1994Photooxidative stress in shootsPhysiol. Plant.92696717

  • FranckT.KeversC.GasparT.1995Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. raised in vitroPlant Growth Regulat.16253256

    • Search Google Scholar
    • Export Citation
  • FranckT.KeversC.PenelC.GreppinH.HausmanJ.F.GasparT.1998Reducing properties, and markers of lipid peroxidation in normal and hyperhydrating shoots of Prunus avium LJ. Plant Physiol.153339346

    • Search Google Scholar
    • Export Citation
  • FranckT.KeversC.GasparT.DommesJ.DebyC.GreimersR.SerteynD.Deby-DupontG.2004Hyperhydricity of Prunus avium shoots cultured on gelrite: A controlled stress responsePlant Physiol. Biochem.42519527

    • Search Google Scholar
    • Export Citation
  • GaoH.XuP.LiJ.JiH.AnL.XiaX.2017aAgNO3 prevents the occurrence of hyperhydricity in Dianthus chinensis L. by enhancing water loss and antioxidant capacityIn Vitro Cell. Dev. Biol. Plant53561570

    • Search Google Scholar
    • Export Citation
  • GaoH.XiaX.AnL.XinX.LiangY.2017bReversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO3 and its associated mechanism during in vitro culturePlant Sci.254111

    • Search Google Scholar
    • Export Citation
  • GribbleK.SarafisV.NailonJ.HolfordP.UwinsP.1996Environmental scanning electron microscopy of the surface of normal and vitrified leaves of Gypsophila paniculata (Babies Breath) cultured in vitroPlant Cell Rep.15771776

    • Search Google Scholar
    • Export Citation
  • GribbleK.TingleJ.SarafisV.HeatonA.HolfordP.1998Position of water in vitrified plants visualized by NMR imagingProtoplasma201110114

  • HarleyM.M.FergusonI.K.1990The role of the SEM in pollen morphology and plant systematics p. 45–68. In: D. Claugher (ed.). Scanning electron microscopy in taxonomy and functional morphology. Sys. Assoc. Spe. Clarendon Press Oxford

  • HassannejadS.BernardF.MirzajaniF.GholamiM.2012SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changesPlant Physiol. Biochem.514046

    • Search Google Scholar
    • Export Citation
  • HazarikaB.N.2006Morpho-physiological disorders in in vitro culture of plantsScientia Hort.108105120

  • HückelhovenR.FodorJ.PreisC.KogelK.H.1999Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulationPlant Physiol.11912511260

    • Search Google Scholar
    • Export Citation
  • HuiA.V.BhattA.SreeramananS.KengC.L.2013Establishment of a shoot proliferation protocol for banana (ABB Group) Cv. ‘Pisang Awak’ via temporary immersion systemJ. Plant Nutr.36529538

    • Search Google Scholar
    • Export Citation
  • IvanovaM.Van StadenJ.2011Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphyllaPlant Cell Tissue Organ Cult.1041321

    • Search Google Scholar
    • Export Citation
  • JafariN.OthmanR.Y.KhalidN.2011Effect of benzylaminopurine (BAP) pulsing on in vitro shoot multiplication of Musa acuminata (banana) cvBerangan. Afr. J. Biotechnol.1024462450

    • Search Google Scholar
    • Export Citation
  • KeversC.GasparT.1986Vitrification of carnation in vitro: Changes in water content, intracellular space, air volume and ion levelsPhysiol. Veg.24647653

    • Search Google Scholar
    • Export Citation
  • KeversC.PratR.GasparT.1987Vitrification of carnation in vitro: Changes in cell wall mechanical properties, cellulose and lignin contentPlant Growth Regulat.55966

    • Search Google Scholar
    • Export Citation
  • KeversC.FranckT.StrasserR.J.DommesJ.GasparT.2004Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological statePlant Cell Tissue Organ Cult.77181191

    • Search Google Scholar
    • Export Citation
  • KomaliA.S.PelegM.GerhardsC.ShettyK.1998A study of the cell wall mechanical properties in unhyperhydrated shoots of oregano (Origanum vulgare) inoculated with Pseudomonas sp. by load deformation analysisFood Biotechnol.12209220

    • Search Google Scholar
    • Export Citation
  • KozaiT.KubotaC.Ryoung JeongB.1997Environmental control for the large-scale production of plants through in vitro techniquesPlant Cell Tissue Organ Cult.514956

    • Search Google Scholar
    • Export Citation
  • MachadoM.P.da SilvaA.L.L.BiasiL.A.DeschampsC.FilhoJ.C.B.ZanetteF.2014Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifoliaMill. Braz. Arch. Biol. Technol.57636643

    • Search Google Scholar
    • Export Citation
  • MajadaJ.P.TadeoF.FalM.A.Sánchez TamésR.2000Impact of culture vessel ventilation on the anatomy and morphology of micropropagated carnationPlant Cell Tissue Organ Cult.63207214

    • Search Google Scholar
    • Export Citation
  • MalavoltaE.VittiG.C.de. OliveiraS.A.1997Avaliacao do estado nutricional das plantas: Principios e aplicacoes. 2nd ed. Piracicaba: Associacao Brasileira para Pesquisa da Potassa e do Fosfato

  • MarschnerH.PossinghamJ.V.1975Effects of K and Na on the growth of leaf discs of sugar beet and spinachZ. Pflanzenphysiol.75616

  • MoranR.PorathD.1982Chlorophyll determination in intact tissues using N,N-Dimethyl formamidePlant Physiol.6913701381

  • MurashigeT.SkoogF.A.1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant.15473479

  • OlmosE.HellinE.1998Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plantsScientia Hort.7591101

    • Search Google Scholar
    • Export Citation
  • OlmosE.PiquerasA.Martinez-SolanoJ.R.HellinE.1997The subcellular localization of peroxidase and the implication of oxidative stress in hyperhydrated leaves of regenerated carnation shootsPlant Sci.13097105

    • Search Google Scholar
    • Export Citation
  • PhanC.T.HegedusP.1986Possible metabolic basis for the developmental anomaly observed in in vitro culture, called ‘vitreous plants’Plant Cell Tissue Organ Cult.68394

    • Search Google Scholar
    • Export Citation
  • PiquerasA.CortinaM.SernaM.D.CasasJ.L.2002Polyamines and hyperhydricity in micropropagated carnation plantsPlant Sci.162671678

  • PospisilovaJ.SynkovaH.HaiselD.SemoradovaS.2007Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review)Acta Hort.7482938

    • Search Google Scholar
    • Export Citation
  • Reyes-VeraI.PotenzaC.BarrowJ.2008Hyperhydricity reversal and clonal propagation of four-wing saltbush (Atriplex canescens, Chenopodiaceae) cultivated in vitroAustral. J. Bot.56358362

    • Search Google Scholar
    • Export Citation
  • Rojas-MartinezL.VisserR.G.F.de KlerkG.2010The hyperhydricity syndrome: Waterlogging of plant tissues as a major causePropag. Ornam. Plants10169175

    • Search Google Scholar
    • Export Citation
  • RoutG.R.SamantarayS.DasP.2000Biotechnology of the banana: A review of recent progressPlant Biol.2512524

  • SaherS.PiquerasA.HellinE.OlmosE.2005aPrevention of hyperhydricity in micropropagated carnation shoots by bottom cooling: Implications of oxidative stressPlant Cell Tissue Organ Cult.81149158

    • Search Google Scholar
    • Export Citation
  • SaherS.Fernández-GarcíaN.PiquerasA.HellínE.OlmosE.2005bReducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: A hypoxia stress?Plant Physiol. Biochem.43573582

    • Search Google Scholar
    • Export Citation
  • ShaL.McCownB.H.PetersonL.A.1985Occurrence and cause of shoot-tip necrosis in shoot culturesJ. Amer. Soc. Hort. Sci.110631634

  • SinghH.P.UmaS.SelvarajanR.KarihalooJ.L.2011Micropropagation for production of quality banana planting material in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB) New Delhi India

  • SinghaS.TownsendE.C.OberlyG.E.1990Relationship between calcium and agar on vitrification and shoot-tip necrosis of quince (Cydonia oblonga Mill.) shoots in vitroPlant Cell Tissue Organ Cult.23135142

    • Search Google Scholar
    • Export Citation
  • SoundararajanP.ManivannanA.ChoY.S.JeongB.R.2017Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expressionFront. Plant Sci.8738

    • Search Google Scholar
    • Export Citation
  • SreedharR.V.VenkatachalamL.NeelwarneB.2009Hyperhydricity-related morphologic and biochemical changes in Vanilla (Vanilla planifolia)J. Plant Growth Regul.284657

    • Search Google Scholar
    • Export Citation
  • StrosseH.HouweI.PanisB.JainS.SwennenR.2004Banana cell and tissue culture—Review. Banana improvement: Cellular molecular biology and induced mutations. Proc. Meeting Leuven 24–28 Sept. 2001 1–12

  • SzalaiG.JandaT.PaldiE.SzigetiZ.1996Role of light in post-chilling symptoms in maizeJ. Plant Physiol.148378383

  • TaizL.ZeigerE.2006Plant physiology. 3rd ed. Sinauer Associates Inc. Sunderland MA

  • TianJ.JiangF.WuZ.2014The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitroPlant Cell Tissue Organ Cult.120571584

    • Search Google Scholar
    • Export Citation
  • Valero-AracamaC.KaneM.WilsonS.PhilmanN.2010Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypesPlant Growth Regulat.604349

    • Search Google Scholar
    • Export Citation
  • van den DriesN.GianníS.CzerednikA.KrensF.A.De KlerkG.-J.M.2013Flooding of the apoplast is a key factor in the development of hyperhydricityJ. Expt. Bot.6452215230

    • Search Google Scholar
    • Export Citation
  • VuylstekeD.1989Shoot-tip culture for the propagation conservation and exchange of Musa germplasm. IBPGR Rome

  • WhitlowT.H.BassukN.L.RanneyT.G.ReichertD.L.1992An improved method for using electrolyte leakage to assess membrane competence in plant tissuesPlant Physiol.98198205

    • Search Google Scholar
    • Export Citation
  • ZimmermanT.W.RogersS.M.D.CobbB.G.1988Physiological differences between normal and vitreous petunias grown in vitro. ASHS/CSHS 1988 Ann Mtg, East Lansing, Mich, Prog & AbstrHortScience23780(abstr.)

    • Search Google Scholar
    • Export Citation

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 68 68 68
Full Text Views 8 8 8
PDF Downloads 5 5 5