Model Simulation of Cucumber Yield and Microclimate Analysis in a Semi-closed Greenhouse in China

in HortScience

Adequate greenhouse environmental management is very important for improving resource use efficiency and increasing vegetable yield. The objective of this study was to explore suitable climate and cultivation management for cucumber to achieve high yield and build optimal yield models in semi-closed greenhouses. A fruit cucumber cultivar Deltastar was grown over 4 years in greenhouse and weekly data of yields (mean, highest and lowest) and environmental variables, including total radiation, air temperature, relative humidity, and carbon dioxide (CO2) concentration were collected. Regression analyses were applied to develop the relationships and build best regression models of yields with environmental variables using the first 2 years of data. Data collected in years 3 and 4 were used for model validation. Results showed that total radiation, nutrient, temperature, CO2 concentration, and average nighttime relative humidity had significant correlations with cucumber yields. The best regression models fit the mean, lowest, and highest yields very well with R2 values of 0.67, 0.66, and 0.64, respectively. Total radiation and air temperature had the most significant contributions to the variations of the yields. Our results of this study provide useful information for improving greenhouse climate management and yield forecast in semi-closed greenhouses.

Contributor Notes

This work was supported by the Agricultural Basic Research of the Shanghai Agriculture Commission (7-2-1, 2014), Natural Science Foundation of Shanghai (18ZR1433200), and Shanghai Agriculture Committee Promotion Project (2-5-8, 2016). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author contributions: Conceived and designed the experiments: Q.Z., J.Y., X.D. Performed the experiments: X.D., Y.J., L.H. Analyzed the data: Y.J., X.D., D.Huang. Contributed reagents/materials/analysis tools: X.D., Q.Z., D.Hui. Wrote the paper: X.D., J.Y. The authors declare no competing interests.

Contributed equally to this work.

Corresponding authors. E-mail: 13636569665@163.com or zhou.qiang@dushigreen.com.

  • AlsadonA.Al-HelalI.IbrahimA.Abdel-GhanyA.AlZaharaniS.AshourT.2016The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growthEcol. Eng.87305312

    • Search Google Scholar
    • Export Citation
  • BoaventuraJ.de MouraJ.P.2003Optimal management of greenhouse environments. In: Proceedings of EFITA 2003 Conference Debrecen Hungary 5–9 July 2003; p. 559–564

  • BoulardT.RoyJ.C.PouillardJ.B.FatnassiH.GriseyA.2017Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamicsBiosyst. Eng.158110133

    • Search Google Scholar
    • Export Citation
  • CockshullK.E.1988The integration of plant physiology with physical changes in the greenhouse climateActa Hort.229113123

  • DaiJ.F.LiuS.S.ZhangW.R.XuR.LuoW.H.ZhangS.F.YinX.Y.HanL.ChenW.P.2011Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhousesScientia Hort.130551561

    • Search Google Scholar
    • Export Citation
  • DannehlD.JosuttisM.UlrichsC.SchmidtU.2014The potential of a confined closed greenhouse in terms of sustainable production, crop growth, yield and valuable plant compounds of tomatoesJ. Appl. Bot. Food Qual.87210219

    • Search Google Scholar
    • Export Citation
  • De GelderA.DielemanJ.A.BotG.P.A.MarcelisL.F.M.2012An overview of climate and crop yield in closed greenhousesJ. Hort. Sci. Biotechnol.87193202

    • Search Google Scholar
    • Export Citation
  • DingX.T.JiangY.P.WangH.JinH.J.ZhangH.M.ChenC.H.YuJ.Z.2013Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low lightActa Physiol. Plant.3514271438

    • Search Google Scholar
    • Export Citation
  • DingX.T.JiangY.P.HaoT.JinH.J.ZhangH.M.HeL.Z.ZhouQ.HuangD.F.HuiD.F.YuJ.Z.2016Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.)PLoS One114E0152429

    • Search Google Scholar
    • Export Citation
  • DoraisM.PapadopoulosA.P.GosselinA.2001Greenhouse tomato fruit qualityHort. Rev.26239319

  • Duarte-GalvanC.Torres-PachecoI.Guevara-GonzalezR.G.Romero-TroncosoR.J.Contreras-MedinaL.M.Rios-AlcarazM.A.Millan-AlmarazJ.R.2012Advantages and disadvantages of control theories applied in greenhouse climate control systemsSpanish J. Agr. Res.10926938

    • Search Google Scholar
    • Export Citation
  • FanourakisD.CarvalhoS.M.AlmeidaD.P.HeuvelinkE.2011Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioningPhysiol. Plant.142274286

    • Search Google Scholar
    • Export Citation
  • GielingT.H.CampenJ.B.DielemanJ.A.GarciaN.JanssenH.J.J.2011Monitoring of climate variables in semi-closed greenhousesActa Hort.89310731080

    • Search Google Scholar
    • Export Citation
  • HassanienR.H.E.LiM.LinW.D.2016Advanced applications of solar energy in agricultural greenhousesRenew. Sustain. Energy Rev.549891001

  • KaukorantaT.NäkkiläJ.SärkkäL.JokinenK.2014Effects of lighting, semi-closed greenhouse and split-root fertigation on energy use and CO2 emissions in high latitude cucumber growingAgr. Food Sci.23220235

    • Search Google Scholar
    • Export Citation
  • KläringH.P.HauschildC.HeißnerA.Bar-YosefB.2007Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yieldAgr. For. Meteorol.143208216

    • Search Google Scholar
    • Export Citation
  • LebedaA.CohenY.2011Cucurbit downy mildew (Pseudoperonospora cubensis): Biology, ecology, epidemiology, host-pathogen interaction and controlEur. J. Plant Pathol.129157192

    • Search Google Scholar
    • Export Citation
  • LiH.WangF.ChenX.J.ShiK.XiaX.J.ConsidineM.J.YuJ.Q.ZhouY.H.2014The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto fig leaf gourd/luffa rootstocksPhysiol. Plant.152571584

    • Search Google Scholar
    • Export Citation
  • LiuB.B.LiM.LiQ.M.CuiQ.Q.ZhangW.D.AiX.Z.BiH.G.2018Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlingsPhotosynthetica56942952

    • Search Google Scholar
    • Export Citation
  • MarcelisL.F.M.1992The dynamics of growth and dry matter distribution in cucumberAnn. Bot.69487492

  • MarcelisL.F.M.BroekhuijsenA.G.M.MeinenE.NijsE.M.F.M.RaaphorstM.G.M.2006Quantification of the growth response to light quantity of greenhouse grown cropsActa Hort.71197103

    • Search Google Scholar
    • Export Citation
  • MarcelisL.F.M.HeuvelinkE.GoudriaanJ.1998Modelling biomass production and yield of horticultural crops: A reviewScientia Hort.7483111

  • NederhoffE.M.VegterJ.G.1994Photosynthesis of stands of tomato, cucumber and sweet pepper measured in greenhouses under various CO2-concentrationsAnn. Bot.73353361

    • Search Google Scholar
    • Export Citation
  • OpdamJ.J.G.SchoonderbeekG.G.HellerE.B.M.de GelderA.2005Closed greenhouse: A starting point for sustainable entrepreneurship in horticultureActa Hort.691517524

    • Search Google Scholar
    • Export Citation
  • QianT.DielemanJ.A.ElingsA.De GelderA.MarcelisL.F.M.2015Response of tomato crop growth and development to a vertical temperature gradient in a semi-closed greenhouseJ. Hort. Sci. Biotechnol.90578584

    • Search Google Scholar
    • Export Citation
  • QianT.DielemanJ.A.ElingsA.MarcelisL.F.M.2012Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouseScientia Hort.14519

    • Search Google Scholar
    • Export Citation
  • QianT.DielemanJ.A.ElingsA.De GelderA.MarcelisL.F.M.Van KootenO.2011Comparison of climate and production in closed, semi-closed and open greenhousesActa Hort.893807814

    • Search Google Scholar
    • Export Citation
  • TianL.G.MengQ.H.WangL.P.DongJ.H.2014A study on crop growth environment control systemIntl. J. Control Autom.7357374

  • VandenbusscheF.VriezenW.H.SmalleJ.LaarhovenL.J.HarrenF.J.Van Der StraetenD.2003Ethylene and auxin control the Arabidopsis response to decreased light intensityPlant Physiol.133517527

    • Search Google Scholar
    • Export Citation
  • XuR.DaiJ.LuoW.YinX.LiY.TaiX.HanL.ChenY.LinL.LiG.ZouC.DuW.DiaoM.2010A photothermal model of leaf area index for greenhouse cropsAgr. For. Meteorol.150541552

    • Search Google Scholar
    • Export Citation
  • ZhouX.GeZ.M.KellomakiS.WangK.Y.PeltolaH.MartikainenP.2011Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimesGlob. Change Biol. Bioenergy3223234

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 26
Full Text Views 36 36 2
PDF Downloads 23 23 1