Endogenous Production of Geosmin in Table Beet

in HortScience

The earthy flavor of table beet is due to an aromatic terpene derivative called geosmin. It has been hypothesized that geosmin presence in beet is due to geosmin-producing bacteria such as Streptomyces spp. that exist in the soil. However, recent findings suggest that beet may produce geosmin endogenously without microbial influence. The purpose of this study was to determine whether such endogenous production of geosmin occurred in beet by making use of an aseptic tissue culture (TC) environment to remove potential microbial influences on geosmin production. Four table beet accessions (‘Bull’s Blood’, ‘Touchstone Gold’, ‘W364B’, and ‘Pacemaker III’) were grown in three separate TC experiments and in the greenhouse and measured for geosmin concentration via gas chromatography–mass spectrometry (GC-MS). Sequencing of 16S ribosomal RNA was used to identify potential microbial contaminants in TC. Operational taxa units (OTUs) classification resulted in RNA sequences with homology to bacterial RNA of either chloroplast (98%) or mitochondria (2%) origin. Other OTUs identified were considered within the range of sequencing error. In 15 of the 16 TC–grown samples used for the 16S rRNA aseptic validation and in all the greenhouse-grown plant samples, geosmin was detected. Geosmin concentrations from bulked beet tissue of each accession were higher in the TC environment than the greenhouse environment. The lack of microbial detection in the TC environment and the subsequent identification of geosmin from beets grown in the aseptic environment is a strong indication that geosmin is produced endogenously by beets. This finding raises several interesting questions about the functional significance of this molecule for Beta vulgaris.

Contributor Notes

We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing DNA extraction, library construction, and the bioinformatic pipeline services. The technical assistance and advice from Andy Witherell and Amy Charkowski are gratefully acknowledged.

Corresponding author. E-mail: ilgoldma@wisc.edu.

Article Sections

Article Figures

  • View in gallery

    Table beet accession ‘Touchstone Gold’ grown in tissue culture (TC) and greenhouse. (A) Example of TC beets in culture. (B) Germination of beet multigerm seed ball in TC. (C) Greenhouse-grown beet tissue rinsed for geosmin concentration analysis.

  • View in gallery

    Geosmin concentration (μg·kg−1) of bulked beet leaf tissue (n = 3) of open pollinated (‘Bull’s Blood’ and ‘Touchstone Gold’), hybrid (‘Pacemaker’), and inbred (‘W364’) beets grown in either aseptic tissue culture (TC) or greenhouse conditions (GH). LGC Root is beetroot tissue from a low-geosmin beet population and prepared for analysis under the same conditions as beet accession leaf tissue.

Article References

  • AcreeT.LeeC.1976Geosmin, the earthy component of table beet odorJ. Agr. Food Chem.2445

  • BachV.MikkelsenL.KidmoseU.EdelenbosM.2014Culinary preparation of beetroot (Beta vulgaris L.): The impact on sensory quality and appropriatenessJ. Sci. Food Agr.9518521859

    • Search Google Scholar
    • Export Citation
  • ButteryR.G.GaribaldiJ.A.1976Geosmin and methylisoborneol in garden soilJ. Agr. Food Chem.24419420

  • CaporasoJ.G.KuczynskiJ.StombaughJ.BittingerK.BushmanF.D.CostelloE.K.FiererN.Gonzalez PenaA.GoodrichJ.K.GordonJ.I.HuttleyG.A.KelleyS.T.KnightsD.KoenigJ.E.LeyR.E.LozuponeC.A.McDonaldD.MueggeB.D.PirrungM.ReederJ.SevinskyJ.R.TurnbaughP.J.WaltersW.A.WidmannJ.YatsunenkoT.ZaneveldJ.KnightR.2010QIIME allows analysis of high-throughput community sequencing dataNat. Methods7335336

    • Search Google Scholar
    • Export Citation
  • CoombsJ.T.FrancoC.M.2003Isolation and identification of actinobacteria from surface-sterilized wheat rootsAppl. Environ. Microbiol.6956035608

    • Search Google Scholar
    • Export Citation
  • DaiZ.C.FuW.WanL.Y.CaiH.H.WangN.QiS.S.DuD.L.2016Different growth promoting effects of endophytic bacteria on invasive and native clonal plantsFront. Plant Sci.719

    • Search Google Scholar
    • Export Citation
  • FreidigA.K.GoldmanI.L.2014Geosmin (2β,6α-dimethylbicyclo[4.4.0]decan-1β-ol) production associated with Beta vulgaris ssp. vulgaris is cultivar specificJ. Agr. Food Chem.6220312036

    • Search Google Scholar
    • Export Citation
  • GlennT.C.2011Field guide to next-generation DNA sequencersMol. Ecol. Resour.11759769

  • HanshewA.MasonC.RaffaK.CurrieC.2013Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communitiesJ. Microbiol. Methods95149155

    • Search Google Scholar
    • Export Citation
  • JacksonC.StoneB.TylerH.2015Emerging perspectives on the natural microbiome of fresh produce vegetablesAgriculture5170187

  • JacobsJ.BugbeeM.GabrielsonA.GabrielsonD.A.1985Enumeration, location, and characterization of endophytic bacteria within sugar beetrootsCan. J. Bot.6312621265

    • Search Google Scholar
    • Export Citation
  • JiangJ.HeX.CaneD.E.2006Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosminJ. Amer. Chem. Soc.12881288129

    • Search Google Scholar
    • Export Citation
  • JiangJ.HeX.CaneD.E.2007Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzymeNat. Chem. Biol.3711715

    • Search Google Scholar
    • Export Citation
  • JonesS.E.ElliotM.A.2017Streptomyces exploration: Competition, volatile communication and new bacterial behavioursTrends Microbiol.25522531

    • Search Google Scholar
    • Export Citation
  • JüttnerF.WatsonS.B.2007Biochemical and ecological control of geosmin and 2-methylisoborneol in source watersAppl. Environ. Microbiol.7343954406

    • Search Google Scholar
    • Export Citation
  • KlindworthA.PruesseE.SchweerT.PepllesJ.QuastC.HornM.GlöcknerF.O.2013Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studiesNucl. Acids Res.41e1

    • Search Google Scholar
    • Export Citation
  • LuG.EdwardsC.G.FellmanJ.K.MattinsonD.S.NavazioJ.2003aBiosynthetic origin of geosmin in red beets (Beta vulgaris L.)J. Agr. Food Chem.5110261029

    • Search Google Scholar
    • Export Citation
  • LuG.FellmanJ.K.EdwardsC.G.MattinsonD.S.NavazioJ.2003bQuantitative determination of geosmin in red beets (Beta vulgaris L.) using headspace solid-phase microextractionJ. Agr. Food Chem.5110211025

    • Search Google Scholar
    • Export Citation
  • MagaJ.A.1987Musty/earthy aromasFood Rev. Intl.3261282

  • MaherL.GoldmanI.L.2017Bidirectional recurrent half-sib family selection for geosmin concentration in table beetCrop Sci.57111

  • NeelwarneB.2013Red beet biotechnology: Food and pharmaceutical applications. Springer New York NY

  • PatersonR.R.VenâncioA.LimaN.2007Why do food and drink smell like earth? p. 120–128. In: A. Mendez-Vilas (ed.). Communicating current research and education topics and trends in applied microbiology. Formatex Badajoz Spain

  • RashashD.M.C.DietrichA.M.HoehnR.C.1997FPA of selected odorous compoundsJ. Amer. Water Works Assn.89131141

  • Saghai-MaroofM.A.SolimanK.M.JorgensenR.A.AllardR.W.1984Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamicsProc. Natl. Acad. Sci. USA8180148018

    • Search Google Scholar
    • Export Citation
  • SavithaB.C.ThimmarajuR.BhagyalakshmiN.RavishankarG.A.2006Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactorProcess Biochem.415060

    • Search Google Scholar
    • Export Citation
  • SchirmerM.IjazU.Z.D’AmoreR.HallN.SloanW.T.QuinceC.2015Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platformNucl. Acids Res.436e37

    • Search Google Scholar
    • Export Citation
  • SchlumpbergerB.O.JuxA.KunertM.BolandW.WittmannD.2004Musty-earthy scent in cactus flowers: Characteristics of floral scent production in dehydrogeosmin-producing cactiIntl. J. Plant Sci.16510071015

    • Search Google Scholar
    • Export Citation
  • SchöllerC.E.GürtlerH.PedersenR.MolinS.WilkinsK.2002Volatile metabolites from actinomycetesJ. Agr. Food Chem.5026152621

  • SeipkeR.F.KaltenpothM.HutchingsM.I.2012Streptomyces as symbionts: An emerging and widespread theme?FEMS Microbiol. Rev.36862876

  • ShiY.YangH.ZhangT.SunJ.LouK.2014Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountainAppl. Microbiol. Biotechnol.9863756385

    • Search Google Scholar
    • Export Citation
  • ThimmarajuR.BhagyalakshmiN.NarayanM.S.RavishankarG.A.2003Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stressProcess Biochem.3810691076

    • Search Google Scholar
    • Export Citation
  • YildizM.OndeS.OzgenM.2007Sucrose effects on phenolic concentration and plant regeneration from sugarbeet leaf and petiole explantsJ. Sugar Beet Res.44116

    • Search Google Scholar
    • Export Citation

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 407 407 98
Full Text Views 156 156 0
PDF Downloads 11 11 0