Effect of Exogenous Adenosine Triphosphate Supply on the Senescence-related Physiology of Cut Carnation Flowers

in HortScience

If the inline PDF is not rendering correctly, you can download the PDF file here.

Carnation (Dianthus caryophyllus L.) flowers deteriorate rapidly after harvest. Symptoms of deterioration include petal in-rolling and discoloration, which results in reduced vase life (Badiyan et al., 2004; Bowyer et al., 2003; Thompson et al., 1982). The short vase life of cut carnation flowers may limit successful marketing.

Energy metabolism related to physiological disorders and senescence of plant tissues has been investigated in various harvested horticultural crops, such as litchi fruit, pear, and carnation (Duan et al., 2004; Saquet et al., 2003; Solomos and Gross, 1997; Veltman et al., 2003). In carnation and rose, membrane deterioration and senescence are associated with a decrease in respiratory activity and may be delayed when flowers are supplied with respiratory substrates (Fobel et al., 1987; Monteiro et al., 2001; Thompson et al., 1982; Trippi and Paulin, 1984). Trippi and Paulin (1984) showed that an increase in membrane permeability was associated with a decrease of energy production in senescing cut carnation flowers. Vase solutions containing adenosine triphosphate (ATP) can extend the vase life of cut carnation flowers (Song et al., 2006b). Thus, it is suggested that the low-energy status of plant tissues may lead to cut flower senescence and reduced vase life.

This investigation determined the effects of exogenous ATP supply on the senescence-related physiology of cut carnation flowers. With a view to understanding better the role of tissue energy status in the senescence of carnation flowers, the effects of exogenous ATP supply on time to maximum flower expansion, vase life, rates of ethylene production and respiration, and endogenous ATP and adenosine monophosphate (AMP) concentrations during vase life of cut carnation flowers were investigated.

Carnation cv. ‘Master’ flowers were obtained from a commercial market in Guangzhou, China. Flowers were transported to the laboratory within 6 h. Flowers were uniform at commercial maturity (outer petals horizontal), as described by Wu et al. (1992). Their stems were recut under water to a length of ≈30 cm. Stems were assigned at random to flasks containing either distilled water (control) or 0.1 mmol·L−1 ATP solution until the end of the vase life of the control flowers (up to 10 d). The concentration of 0.1 mmol·L−1 ATP is the most beneficial in extending the vase life of the cut flowers, as identified by Song et al. (2006b). The volume of ATP solution or distilled water was maintained at constant levels by replenishing the flasks daily. There were four flowers per flask and three flasks (replications) per treatment. Flasks were arranged in a completely randomized design. Throughout the experimental period, flowers were held at 25 °C and 70% to 80% relative humidity with a 12-hour light period per day at an irradiance of 12 W/m2 at flower level from fluorescent light tubes.

The time (d) from harvest to the maximum flower expansion was calculated. Vase life was evaluated every 12 h on a scale from 1 to 5 pt as described by Song et al. (2006b), where 1 pt is fresh without any deterioration; 2 pt is slight discoloration, mold growth, or wilting; 3 pt is moderate discoloration, mold growth, or wilting; 4 pt is severe discoloration, mold growth, or wilting; and 5 pt is entirely discolored, substantial mold growth, or wilting. All flowers were scored until they had deteriorated to a score of 5 pt.

Stems were weighed every 2 d to enable calculation of relative fresh weight (percent of the initial fresh weight). Respiration and ethylene production rates were measured according to the method of Serrano et al. (2001). Flower stems were trimmed to about 5 cm in length and sealed in a 500-mL glass jar for 1.5 h. A 1-mL gas sample was then withdrawn from the jar using a syringe. Carbon dioxide and C2H4 concentrations were determined by gas chromatography (Shimadzu GC 17A, Tokyo). Rates of ethylene production and respiration were calculated on a fresh weight basis. For determinations of ATP and AMP concentrations, outermost petal tissues (2 g) were homogenized with 15 mL 0.6 mol·L−1 perchloric acid for 1 min in an ice bath as described by Ozogul et al. (2000). The extraction mixture was centrifuged at 3000 g for 10 min at 4 °C. Ten milliliters of supernatant was taken and adjusted to a pH of 6.5 to 6.8 with 1 mol·L−1 KOH. The supernatant was allowed to stand for 30 min in an ice bath to precipitate most of the potassium perchlorate. Precipitate was then removed by centrifugation at 5000 g for 5 min at 4 °C. Adenosine triphosphate and AMP concentrations were determined using a high-performance liquid chromatograph (Waters 2690) equipped with a C18 reverse-phase column [octadecylselyl (ODS), 4.6 × 250 mm] according to the method of Duan et al. (2004). Adenosine triphosphate and AMP concentrations were expressed on a fresh weight basis.

Experiments were arranged in a completely randomized design. There were three replicates. Data were tested by analysis of variance using SPSS version 7.5. Least significance differences (lsds) were calculated to compare significant effects at the 5% level.

Application of 0.1 mmol·L−1 ATP to the vase solution extended the vase life of cut carnation flowers from 12.7 to 16.3 d, an increase of 3.6 d, and delayed the time to maximum flower expansion by 1.7 d, compared with non-ATP-treated flowers held in distilled water (Table 1). Fresh weight of cut carnation flowers increased within the first 2 d of vase life, but declined at day 6 (Fig. 1A). The ATP-treated cut carnation flowers had a relatively high fresh weight compared with the control flowers throughout the vase life evaluation period (Fig. 1A). Similar results were observed in response to provision of respiratory substrates to potted and cut rose flowers (Monteiro et al., 2002; Podd and Van Staden, 2002; Van Doorn and Reid, 1991).

Table 1.

Effects of exogenous adenosine triphosphate (ATP) supply on the time from harvest to maximum flower expansion and vase life of cut carnation flower.

Table 1.
Fig. 1.
Fig. 1.

(A–C) Effects of exogenous adenosine triphosphate (ATP) supply on fresh weight (A), respiration (B), and ethylene production rate (C) of the outermost petals of cut carnation flowers in a distilled water vase solution containing either 0 (●) or 0.1 (▲) mmol·L−1 ATP. Data are the mean ± se of 12 flowers. Where no error bar appears, the se was smaller than the size of the symbol.

Citation: HortScience horts 43, 1; 10.21273/HORTSCI.43.1.271

Cut carnation flowers can show a marked climactericlike respiration pattern during senescence (Mayak and Dilley, 1976; Podd and Van Staden, 2002). However, Trippi and Paulin (1984) found generally decreasing respiratory activity during senescence of cut carnation flowers. Van Doorn and Reid (1991) reported that respiratory patterns of cut carnation flowers during vase life were cultivar dependent. In this study, exogenous supply of 0.1 mmol·L−1 ATP generally enhanced respiratory activity (Fig. 1B). The observed trends in respiration rate during vase life evaluation were only weakly climacteric.

Ethylene production by the cut carnation flowers slowly increased after 4 d and reached a maximum after 8 d of vase life (Fig. 1C). The peak in ethylene production rate was coincident with the appearance of visible senescence symptoms, including petal in-rolling and withering. Provision of 0.1 mmol·L−1 ATP in the vase solution consistently reduced ethylene production rates throughout the vase life evaluation period. Van Doorn and Reid (1991) observed that vase life extension in cut flowers was related to inhibition in ethylene production. Borochov and Adam (1984) found that ATP supply inhibited ethylene production of detached carnation petals.

Adenosine triphosphate is the primary energy pool in living tissues. Endogenous ATP content in cut carnation flowers increased from day 0 to day 4, and then decreased (Fig. 2A). In contrast, AMP content increased after day 4 (Fig. 2B). Exogenous ATP supply maintained relatively a higher ATP content and reduced the increase in AMP content at the later stages of vase life. Exogenous sucrose to vase life solution increased carbohydrate levels, enhanced respiration, and extended the longevity of potted miniature rose, possibly as a result of maintenance of tissue energy (Monteiro et al., 2002). A correlation between energy metabolism and incidence of core browning of pear fruit or senescence of cut carnation flower has been established (Saquet et al., 2001; Trippi et al., 1988; Veltman et al., 2003). Reduction of the ATP level synthesized in the cell could lead to a loss of cellular integrity, and incomplete terminal oxidation (Pradet and Raymond, 1983). In longan fruit, high ATP content and adenylate energy charge level of pericarp tissues could contribute to maintenance of membrane integrity (Su et al., 2005). Furthermore, exogenous application of ATP increased tissue energy status and exhibited potential for browning control and quality maintenance of harvested litchi fruit (Song et al., 2006a). It is suggested that an exogenous ATP supply could contribute to the maintenance of tissue energy and thereby delay senescence of cut carnation flowers.

Fig. 2.
Fig. 2.

(A, B) Effects of an exogenous adenosine triphosphate (ATP) supply on ATP (A) and adenosine monophosphate (AMP) (B) contents of the outermost petals of cut carnation flowers in a distilled water vase solution containing either 0 (●) or 0.1 (▲) mmol·L−1 ATP. Data are the mean ± se of 12 flowers. Where no error bar appears, the se was smaller than the size of the symbol.

Citation: HortScience horts 43, 1; 10.21273/HORTSCI.43.1.271

In conclusion, an exogenous ATP supply extended the vase life and retarded the senescence of cut carnation flowers mediated through increasing fresh weight, enhancing respiration, reducing ethylene production rates, and maintaining higher endogenous ATP concentration in tissues, and showed the potential for practical horticultural value.

Literature Cited

  • BadiyanD.WillsR.B.H.BowyerM.C.2004Use of a nitric oxide donor compound to extend the vase life of cut flowersHortScience3913711372

  • BorochovA.AdamZ.1984On the role of membrane integrity in the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene in carnation petalsFEBS Lett.173139141

    • Search Google Scholar
    • Export Citation
  • BowyerM.C.WillsR.B.H.BadiyanD.2003Extending the postharvest life of carnations with nitric oxide: Comparison of fumigation and in vivo deliveryPostharvest Biol. Technol.30281286

    • Search Google Scholar
    • Export Citation
  • DuanX.U.JiangY.M.SuX.G.LiuH.LiY.B.ZhangZ.Q.ZhengY.H.JiangW.B.2004Role of pure oxygen treatment in browning of litchi fruit after harvestPlant Sci.167665668

    • Search Google Scholar
    • Export Citation
  • FobelM.LynchD.V.ThompsonJ.E.1987Membrane deterioration in senescing carnation flowersPlant Physiol.85204211

  • MayakS.DilleyD.R.1976Regulation of senescence in carnation (Dianthus caryophyllus)Plant Physiol.58663665

  • MonteiroJ.A.NellT.A.BarrettJ.E.2001Postproduction of potted miniature rose: Flower respiration and single flower longevityJ. Amer. Soc. Hort. Sci.126134139

    • Search Google Scholar
    • Export Citation
  • MonteiroJ.A.NellT.A.BarrettJ.E.2002Effects of exogenous sucrose on carbohydrate levels, flower respiration and longevity of potted miniature rose (Rosa hybrida) flowers during postproductionPostharvest Biol. Technol.26221229

    • Search Google Scholar
    • Export Citation
  • OzogulF.A.TaylorK.D.QuantickP.C.OzogulY.2000A rapid HPLC-determination of ATP-related compounds and its application to herring stored under modified atmosphereIntl. J. Food Sci. Technol.35549554

    • Search Google Scholar
    • Export Citation
  • PoddL.A.Van StadenJ.2002Physiological response and extension of vase life of cut carnation flowers treated with ethanol and acetaldehyde. I. Chlorophyll content and carbohydrate statusPlant Grow. Regul.3899105

    • Search Google Scholar
    • Export Citation
  • PradetA.RaymondP.1983Adenine nucleotide ratios and adenylate energy charge in energy metabolismAnnu. Rev. Plant Physiol.34199224

  • SaquetA.A.StreifJ.BangerthF.2001On the involvement of adenine nucleotides in the development of brown heart in ‘Conference’ pears during delayed controlled atmosphere storageGartenbauwissenschaft66140144

    • Search Google Scholar
    • Export Citation
  • SaquetA.A.StreifJ.BangerthF.2003Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storagePostharvest Biol. Technol.30123132

    • Search Google Scholar
    • Export Citation
  • SerranoM.AmorósA.PretelM.T.Martínez-MadridM.C.RomojaroF.2001Preservative solutions containing boric acid delay senescence of carnation flowersPostharvest Biol. Technol.23133142

    • Search Google Scholar
    • Export Citation
  • SolomosT.GrossK.1997Effects of hypoxia on respiration and the onset of senescence in cut carnation flowers (Dianthus caryophyllus L.)Postharvest Biol. Technol.10145153

    • Search Google Scholar
    • Export Citation
  • SongL.L.JiangY.M.GaoH.Y.LiC.T.LiuH.YouY.L.SundayJ.2006aEffects of adenosine triphosphate on browning and quality of harvested litchi fruitAmer. J. Food Technol.1173178

    • Search Google Scholar
    • Export Citation
  • SongL.L.LiuH.SuX.G.YouY.L.JiangY.M.2006bEffects of adenosine triphosphate on the vase life of cut carnation flowersAust. J. Exp. Agr.46136139

    • Search Google Scholar
    • Export Citation
  • SuX.G.JiangY.M.DuanX.W.LiY.B.LinW.B.ZhengY.H.2005Effects of pure oxygen on the rate of skin browning and energy status in longan fruitFood Technol. Biotechnol.43359365

    • Search Google Scholar
    • Export Citation
  • ThompsonJ.E.MayakS.ShinitzkyM.HalevyA.H.1982Acceleration of membrane senescence in cut carnation flowers by treatment with ethylenePlant Physiol.69859863

    • Search Google Scholar
    • Export Citation
  • TrippiV.PaulinA.1984The senescence of cut carnation: A phasic phenomenonPhysiol. Plant.60221226

  • TrippiV.S.PaulinA.PradetA.1988Effect of oxygen concentration on the senescence and energy metabolism of cut carnation flowersPhysiol. Plant.73374379

    • Search Google Scholar
    • Export Citation
  • Van DoornM.W.W.ReidM.S.1991Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. I. Comparison of flower life, respiration and ethylene biosynthesisSci. Hort.4899107

    • Search Google Scholar
    • Export Citation
  • VeltmanR.H.LenthéricI.Van der PlasL.H.W.PeppelenbosH.W.2003Internal browning in pear fruit (Pyrus communis L. cv. ‘Conference’) may be a result of a limited availability of energy and antioxidantsPostharvest Biol. Technol.28295302

    • Search Google Scholar
    • Export Citation
  • WuM.J.ZacariasL.SaltveitM.E.ReidM.S.1992Alcohols and carnation senescenceHortScience27136138

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

To whom reprint requests should be addressed; e-mail ymjiang@scbg.ac.cn

Article Figures

  • View in gallery

    (A–C) Effects of exogenous adenosine triphosphate (ATP) supply on fresh weight (A), respiration (B), and ethylene production rate (C) of the outermost petals of cut carnation flowers in a distilled water vase solution containing either 0 (●) or 0.1 (▲) mmol·L−1 ATP. Data are the mean ± se of 12 flowers. Where no error bar appears, the se was smaller than the size of the symbol.

  • View in gallery

    (A, B) Effects of an exogenous adenosine triphosphate (ATP) supply on ATP (A) and adenosine monophosphate (AMP) (B) contents of the outermost petals of cut carnation flowers in a distilled water vase solution containing either 0 (●) or 0.1 (▲) mmol·L−1 ATP. Data are the mean ± se of 12 flowers. Where no error bar appears, the se was smaller than the size of the symbol.

Article References

  • BadiyanD.WillsR.B.H.BowyerM.C.2004Use of a nitric oxide donor compound to extend the vase life of cut flowersHortScience3913711372

  • BorochovA.AdamZ.1984On the role of membrane integrity in the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene in carnation petalsFEBS Lett.173139141

    • Search Google Scholar
    • Export Citation
  • BowyerM.C.WillsR.B.H.BadiyanD.2003Extending the postharvest life of carnations with nitric oxide: Comparison of fumigation and in vivo deliveryPostharvest Biol. Technol.30281286

    • Search Google Scholar
    • Export Citation
  • DuanX.U.JiangY.M.SuX.G.LiuH.LiY.B.ZhangZ.Q.ZhengY.H.JiangW.B.2004Role of pure oxygen treatment in browning of litchi fruit after harvestPlant Sci.167665668

    • Search Google Scholar
    • Export Citation
  • FobelM.LynchD.V.ThompsonJ.E.1987Membrane deterioration in senescing carnation flowersPlant Physiol.85204211

  • MayakS.DilleyD.R.1976Regulation of senescence in carnation (Dianthus caryophyllus)Plant Physiol.58663665

  • MonteiroJ.A.NellT.A.BarrettJ.E.2001Postproduction of potted miniature rose: Flower respiration and single flower longevityJ. Amer. Soc. Hort. Sci.126134139

    • Search Google Scholar
    • Export Citation
  • MonteiroJ.A.NellT.A.BarrettJ.E.2002Effects of exogenous sucrose on carbohydrate levels, flower respiration and longevity of potted miniature rose (Rosa hybrida) flowers during postproductionPostharvest Biol. Technol.26221229

    • Search Google Scholar
    • Export Citation
  • OzogulF.A.TaylorK.D.QuantickP.C.OzogulY.2000A rapid HPLC-determination of ATP-related compounds and its application to herring stored under modified atmosphereIntl. J. Food Sci. Technol.35549554

    • Search Google Scholar
    • Export Citation
  • PoddL.A.Van StadenJ.2002Physiological response and extension of vase life of cut carnation flowers treated with ethanol and acetaldehyde. I. Chlorophyll content and carbohydrate statusPlant Grow. Regul.3899105

    • Search Google Scholar
    • Export Citation
  • PradetA.RaymondP.1983Adenine nucleotide ratios and adenylate energy charge in energy metabolismAnnu. Rev. Plant Physiol.34199224

  • SaquetA.A.StreifJ.BangerthF.2001On the involvement of adenine nucleotides in the development of brown heart in ‘Conference’ pears during delayed controlled atmosphere storageGartenbauwissenschaft66140144

    • Search Google Scholar
    • Export Citation
  • SaquetA.A.StreifJ.BangerthF.2003Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storagePostharvest Biol. Technol.30123132

    • Search Google Scholar
    • Export Citation
  • SerranoM.AmorósA.PretelM.T.Martínez-MadridM.C.RomojaroF.2001Preservative solutions containing boric acid delay senescence of carnation flowersPostharvest Biol. Technol.23133142

    • Search Google Scholar
    • Export Citation
  • SolomosT.GrossK.1997Effects of hypoxia on respiration and the onset of senescence in cut carnation flowers (Dianthus caryophyllus L.)Postharvest Biol. Technol.10145153

    • Search Google Scholar
    • Export Citation
  • SongL.L.JiangY.M.GaoH.Y.LiC.T.LiuH.YouY.L.SundayJ.2006aEffects of adenosine triphosphate on browning and quality of harvested litchi fruitAmer. J. Food Technol.1173178

    • Search Google Scholar
    • Export Citation
  • SongL.L.LiuH.SuX.G.YouY.L.JiangY.M.2006bEffects of adenosine triphosphate on the vase life of cut carnation flowersAust. J. Exp. Agr.46136139

    • Search Google Scholar
    • Export Citation
  • SuX.G.JiangY.M.DuanX.W.LiY.B.LinW.B.ZhengY.H.2005Effects of pure oxygen on the rate of skin browning and energy status in longan fruitFood Technol. Biotechnol.43359365

    • Search Google Scholar
    • Export Citation
  • ThompsonJ.E.MayakS.ShinitzkyM.HalevyA.H.1982Acceleration of membrane senescence in cut carnation flowers by treatment with ethylenePlant Physiol.69859863

    • Search Google Scholar
    • Export Citation
  • TrippiV.PaulinA.1984The senescence of cut carnation: A phasic phenomenonPhysiol. Plant.60221226

  • TrippiV.S.PaulinA.PradetA.1988Effect of oxygen concentration on the senescence and energy metabolism of cut carnation flowersPhysiol. Plant.73374379

    • Search Google Scholar
    • Export Citation
  • Van DoornM.W.W.ReidM.S.1991Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. I. Comparison of flower life, respiration and ethylene biosynthesisSci. Hort.4899107

    • Search Google Scholar
    • Export Citation
  • VeltmanR.H.LenthéricI.Van der PlasL.H.W.PeppelenbosH.W.2003Internal browning in pear fruit (Pyrus communis L. cv. ‘Conference’) may be a result of a limited availability of energy and antioxidantsPostharvest Biol. Technol.28295302

    • Search Google Scholar
    • Export Citation
  • WuM.J.ZacariasL.SaltveitM.E.ReidM.S.1992Alcohols and carnation senescenceHortScience27136138

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 2
PDF Downloads 25 25 4