Interpretation of Genotype-by-Environment Interaction for Carotenoid and Tocopherol Content in Broccoli

in HortScience

Genotype-by-environment interaction (G×E) is a fundamental concern in plant breeding since it hinders developing genotypes with wide geographical usefulness. Analysis of variance (ANOVA) has been widely used to interpret G×E, but it does not elucidate the nature and causes of the interaction. Stability analysis provides a summary of the response patterns of genotypes to different growing environments. Two classes of phytochemicals with putative health promoting activity are carotenoids and tocopherols that are relatively abundant in broccoli. Growing clinical and epidemiological evidence suggests that vegetables with enhanced levels of these phytochemicals can reduce the risk of cancer, cardiovascular, and eye diseases. The objective of this study is to have better understanding of the genetic, environmental and G×E interaction effects of these phytochemicals in broccoli to determine the feasibility of the genetic enhancement. The ANOVA and Shukla's stability test were applied to a set of data generated by the HPLC analysis of different carotenoid and tocopherol forms for six broccoli accessions grown over three environments. The ANOVA results show a significant G×E for both phytochemicals that ranged from 22.6% of the total phenotypic variation for beta-carotene to 54.0% for delta-tocopherol while the environmental effects were nonsignificant. The genotypic effects ranged from as low as 1% for alpha-tocopherol to 31.5% and 36.0% for beta-carotene and gamma-tocopherol, respectively. Stability analysis illustrated that the most stable genotype for all phytochemicals is Brigadier. The results suggest that feasibility of the genetic enhancement for major carotenoids and tocopherols. A second experiment that includes a larger set of genotypes and environments was conducted to confirm the results of this study.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 0
PDF Downloads 19 19 0