The Effect of Temperature on Leaf and Flower Development and Flower Longevity of Zygopetalum Redvale `Fire Kiss' Orchid

in HortScience

The vegetatively propagated `Fire Kiss' clone of the hybrid Zygopetalum Redvale orchid has appealing potted-plant characteristics, including fragrant flowers that are waxy lime-green and dark maroon with a broad, three-lobed, magenta and white labellum. We performed experiments to quantify how temperature influenced leaf unfolding and expansion, time from visible inflorescence to flower, and longevity of individual flowers and inflorescences. Plants were grown in controlled-environment chambers with constant temperature set points of 14, 17, 20, 23, 26, and 29 °C and an irradiance of 150 μmol·m-2·s-1 for 9 h·d-1. As actual temperature increased from 14 to 25 °C, the time to produce one leaf decreased from 46 to 19 days. Individual plants were also transferred from a greenhouse to the chambers on the date that an inflorescence was first visible or the first flower of an inflorescence opened. Time from visible inflorescence to open flower decreased from 73 days at 14 °C to 30 days at 26 °C. As temperature increased from 14 to 29 °C, flower and inflorescence longevity decreased from 37 and 38 days to 13 and 15 days, respectively. Data were converted to rates, and thermal time models were developed to predict time to flower and senescence at different temperatures. The base temperature was estimated at 6.2 °C for leaf unfolding, 3.5 °C for time to flower, and 3.7 °C for flower longevity. These models could be used by greenhouse growers to more accurately schedule Zygopetalum flowering crops for particular market dates.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 18
PDF Downloads 67 67 7