Ultraviolet-B Radiation Damage on Kentucky Bluegrass. I. Antioxidant and Colorant Effects

in HortScience

High ultraviolet-B (UV-B; 290-320nm wavelength) may significantly contribute to kentucky bluegrass (Poa pratensis L.) sod death at harvest and transplanting. As terrestrial UV-B levels continue to increase due to a depletion of the stratospheric ozone layer this problem may worsen. Epidermal attenuation from pigments and detoxification of reactive oxygen species by antioxidant metabolites and enzymes are involved in plant defense against oxidative stress caused by UV-B. Our objective was to determine whether the attenuation and detoxification systems of kentucky bluegrass could be artificially boosted by exogenous applications of ascorbic acid (AA), alpha-tocopherol (AT), or a colorant before exposure to high levels of UV-B. Ascorbic acid, AT, and the colorant Green Lawnger (GL), were applied to plugs of mature kentucky bluegrass alone or in combination, and then subjected to artificial, continuous UV-B exposure (70 μmol·m-2·s-1); three greenhouse experiments were conducted. By 3 to 5 days after UV-B initiation, visual quality and photochemical efficiency, as measured by chlorophyll fluorescence were significantly reduced. However, in Expt. 1, AA alleviated decline of visual quality, delayed loss of photochemical efficiency, and increased recovery relative to the control. In Expt. 3, decreased endogenous AT and antioxidant enzyme activities were measured due to UV-B stress. Application of AA, AA + AT, or GL partially alleviated photochemical efficiency decline from 4 to 12 days after initiation of UV-B. In addition, application of the chemical treatments increased leaf tissue AT concentrations by 32% to 42%, increased SOD activity by 30% to 33% and increased catalase activity by 37% to 59%, relative to the control as measured 10 days after UV-B initiation. Greater AT concentration and SOD and catalase activities were associated with greater visual quality under UV-B stress. The results of these studies indicate that kentucky bluegrass UV-B tolerance may be increased by supplementing its pigment and antioxidant defense systems with foliar applications of AA, AT or GL.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 9
PDF Downloads 39 39 1