Mulches and Biosolids Affect Vigor, Yield and Leaf Nutrition of Fertigated High Density Apple

in HortScience

`Spartan' apple (Malus×domestica Borkh.) trees on M.9 (T337) rootstock were planted in April 1994 at 1.25 m × 3.5 m spacing. Seven soil management treatments were applied within a 2-m-wide strip centered on the tree row and arranged in a randomized complete-block experimental design. Treatments included a weed-free strip (check) maintained with four annual applications of glyphosate; surface application of 45 t·ha-1 of Greater Vancouver Regional District (GVRD) biosolids applied in 1994 and again in 1997; mulches of shredded office paper; alfalfa (Medicago sativa L.) hay; black woven polypropylene; and shredded paper applied over 45 t·ha-1 GVRD-and Kelowna-biosolids applied in 1994 and 1997. All experimental trees were fertigated with phosphorus (P) in the first year and with nitrogen (N) annually. Cumulative yield for the first five harvests was higher for trees subjected to any soil management treatment relative to check trees. Maximum cumulative yield, exceeding check trees by 80%, was measured for trees grown with a shredded paper mulch with or without biosolids application. Trees from the three shredded paper treatments were the only ones significantly larger than check trees after six growing seasons. No increases in leaf nutrient concentration were consistently as sociated with improved tree performance. Notable effects included increased leaf P concentration associated with biosolids application, increased leaf K concentration after alfalfa mulch application and temporary increases in leaf Zn and Cu concentration associated with application of biosolids high in Zn and Cu. Use of both mulches and biosolids amendments benefits growth of trees in high density plantings despite daily drip irrigation and annual fertigation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 4
PDF Downloads 106 106 5