Urea Nitrogen Uptake by Citrus Leaves

in HortScience

Foliar-applied urea nitrogen (N) has potential to become an important component in fertilizer programs for citrus in Florida and other citrus growing areas as it can reduce nitrate leaching into ground water. We evaluated seasonal absorption characteristics of three urea formulations, Triazone-urea, liquid urea, and spray grade urea by citrus leaves that were from 2 weeks to 6 months old. The effect of leaf age on 15N absorption by N-deficient and N-sufficient leaves, together with urea absorption over an eight-week period were studied using greenhouse-grown and field-grown plants. All foliar N applications were based on a recommended rate of 34 kg N/ha in 469 L of water. In the field studies, leaf N was increased similarly by the three urea formulations one week after three weekly applications. Young leaves (0.25 month and 1 month old) absorbed a greater percentage of N than the older leaves (3 month and 6 month old). Epicuticular wax concentration increased and 15N absorption declined with leaf age. Nitrogen deficient leaves (1.80% N) had greater wax concentration and lower N absorption than N sufficient leaves (2.60% N). Four to 8 weeks after urea applications, Triazone-urea sprayed leaves had significantly greater leaf N concentration than leaves sprayed with liquid urea or nonsprayed control leaves. The greenhouse studies revealed that the 15N absorption was greater through abaxial leaf surfaces than through adaxial surfaces regardless of leaf N level and application time. Applying foliar 15N-urea during night (2000 hr to 2200 hr) resulted in greater absorption of 15N than in the morning (0800 hr to 1000 hr) or afternoon (1200 hr to 1400 hr). It is clear that maximum N absorption from foliar urea sprays occurred at night through the abaxial surfaces of young leaves with sufficient N. Triazone-urea acted as a slow-release N source that could be exploited in supplying N over an extended period of time.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 240 42
PDF Downloads 151 151 21