Influence of Sublethal Glyphosate Rates on Leaf Mineral Concentration of Tomato

in HortScience

Glyphosate at sublethal rates was applied prebloom, at-bloom, or postbloom relative to the first flower cluster to tomato (Lycopersicon esculentum Mill.) to determine the effect on foliar concentrations of N, P, K, Ca, and Mg. Glyphosate rates of 0, 1, 6, 10, 60, and 100 g·ha-1 were used to simulate the effects of spray drift. In three studies, plant vigor declined with increased glyphosate rates and younger plants were more sensitive than older plants. Plant height decreased as glyphosate rate increased, but the response differed with time of evaluation and with stage of development. In Expt. 1, N content decreased with increasing rate of glyphosate, regardless of stage of development, but response varied with time of evaluation with prebloom and at-bloom applications. In Expt. 2, prebloom glyphosate applications reduced N content, but applications at-bloom did not. P declined with prebloom and at-bloom glyphosate applications in Expt. 1, but only with prebloom applications in Expt. 2. In Expt. 3, P concentrations generally declined with glyphosate rates ≤10 g·ha-1, but were unchanged or increased with rates of 60 and 100 g·ha-1. Tissue K, Ca, and Mg concentrations were not consistently affected by glyphosate rate and sample times. Although significant changes in foliar concentrations of N, P, K, Ca, and Mg occurred, leaf mineral analysis was not considered to be a reliable method of quantifying sublethal effects of glyphosate in tomato. Mineral deficiency did not occur in response to glyphosate application. Chemical name used: N-(phosphonomethyl)glycine (glyphosate).

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

To whom requests for reprints should be addressed. E-mail address:
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 61 4
PDF Downloads 37 18 0