Portable Through-flow Cuvette System for Measuring Whole-canopy Gas Exchange of Apple Trees in the Field

in HortScience

A monitoring and control system for sequentially measuring whole-tree-canopy gas exchange of four apple (Malus domestica Borkh.) trees in the field is described. A portable, highly transparent, open-top whole-canopy cuvette was developed for complete enclosure of the above-ground portion of the tree. The flux of whole-canopy CO2 and H2 0 vapor was estimated from differential CO2 concentration and H2O-vapor partial pressure between ambient/reference air entering the cuvette and analysis air leaving the cuvette, as measured by infrared gas analysis. The bulk air-flow rate through the chamber was measured with a Pitot static tube inserted into the air-supply duct and connected to a differential pressure transducer. Performance of the whole-canopy cuvette system was tested for its suitability for gas-exchange measurements under field conditions. The air flow through the whole-canopy cuvette was 22000 L·min-1 (≈5.5 air exchanges/min) during the day, providing adequate air mixing within the cuvette, and 4000 L·min-1 (≈1 air exchange/min) during the night. Daily average leaf temperatures within the cuvette were 2-3 °C higher than to those on trees outside the cuvette. Photosynthetic photon flux transmitted through the chamber walls was at least 92 % of the incident ambient radiation. Moreover, the whole-canopy cuvette was evaluated without tree enclosure to determine the degree of “noise” in differential CO2 concentration and H2O-vapor partial pressure and was found to be acceptable with ΔCO2 ± 0.3 (μmol·mol-1 and ΔH2O ± 5 Pa. Whole-canopy carbon gas exchange and transpiration of four cropping `Braeburn'/M.26 apple trees followed closely incident radiation over the course of a day.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 4
PDF Downloads 37 37 4