Net Carbon Dioxide Exchange Rates of Raspberries at Varying Irradiances, Carbon Dioxide Concentrations, and Air and Soil Temperatures

in HortScience

The influence of irradiance, CO2, and temperature on whole-plant net C exchange rate (NCER) of micropropagated raspberries (Rubus idaeus L. cv. `Heritage') was examined in 1994. Irradiances >1000 μmolm–2–s–1 PAR were required for light saturation, and net photosynthesis (Pn) greatly increased under CO2 enrichment (up to 2000 μlliter–1) and was optimum at 17C. Temperature effects were separated in another experiment using varying air and soil temperatures (15, 20, 25, 30, and 35C) under saturated light and ambient CO2 levels (350 μlliter–1). Both air and soil temperature influenced net Pn, with maximum rates occurring at an air/soil temperature of 17/25C and each contributing 71.2% and 26.7%, respectively, to the total variation explained by a polynomial model (R2 = 0.96). Dark respiration and root respiration rates also increased significantly with elevated air and soil temperatures. Therefore, results from this study indicate that maximum net Pn occurred at an air/soil temperature of 17/25C and that irradiance, CO2 levels, and shoot and root temperatures are all important factors in examining NCER in raspberries.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 17
PDF Downloads 24 24 0