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ABSTRACT. For many horticultural crops, selection is based on quality as well as yield. To investigate the distribution of
trait variation and identify those attributes appropriate for developing selection indices, we collected and organized
information related to fruit size, shape, color, soluble solids, acid, and yield traits for 143 processing tomato (Solanum
Iycopersicum L.) lines from North America. Evaluation of the germplasm panel was conducted in a multiyear,
multilocation trial. Data were stored in a flat-file format and in a trait ontology database, providing a public archive.
We estimated variance components and proportion of variance resulting from genetics for each trait. Genetic variance
was low to moderate (range, 0.03—0.51) for most traits, indicating high environmental influence on trait expression and/or
complex genetic architecture. Phenotypic values for each line were estimated across environments as best linear unbiased
predictors (BLUPs). Principal components (PC) analysis using the trait BLUPs provided a means to assess which traits
explained variation in the germplasm. The first two PCs explained 28.0% and 16.2% of the variance and were heavily
weighted by measures of fruit shape and size. The third PC explained 12.9% of the phenotypic variance and was
determined by fruit color and yield components. Trait BLUPs and the first three PCs were also used to explore the
relationship between phenotypes and the origin of the accessions. We were able to differentiate germplasm for fruit size,
fruit shape, yield, soluble solids, and color based on origin, indicating regional breeding programs provide a source of trait
variation. These analyses suggest that multitrait selection indices could be established that encompass quality traits in
addition to yield. However, such indices will need to balance trait correlations and be consistent with market valuation.
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Breeders of horticultural crops and agronomic crops have
often adopted different strategies and systems of selection.
Breeders of grain crops have a long tradition of quantitative
approaches and of collecting objective data from large pop-
ulations. This practice is facilitated in grain breeding by high-
density planting, stability of the grain in the field, and the
mechanization of harvest. In contrast, many horticultural crops
require a labor-intensive harvest of a perishable commodity.
Evaluation is often based on attributes beyond yield with
appearance and quality receiving significant attention during
selection. Both cost and time constrain the collection of
objective data in horticultural crops, including tomato, and
breeding often defaults to a qualitative decision. Thus, differ-
ences between commodities have affected approaches to
selection, and the challenge remains for breeding programs
targeting horticultural crops to develop the capacity to collect,
store, and analyze objective trait data across multiple environ-
ments and generations in a high-throughput manner.

Plant breeders are beginning to consider estimated breeding
value, the merit of an individual as determined by the
performance of its progeny rather than actual cultivar perfor-
mance as criteria for selection (Heffner et al., 2009). Estimates
of breeding value can be derived from phenotypic data and
pedigree information or genome-wide selection models
(GWSs) that combine phenotype and genotype (Crossa et al.,
2010; de los Campos et al., 2009). Estimating a breeding value
or building robust GWS models requires integrating pedigree,
genotypic, and phenotypic data for large populations. Pheno-
types are recorded over multiple generations, locations, and
years, often with unbalanced experimental designs. To account
for spatial variation between environments, unbalanced data,
and pedigree relationships, best linear unbiased predictors of
phenotypes are used in place of arithmetic means. Phenotypic
data on the scale and scope required to estimate breeding values
have recently been summarized for several agronomic crop
species, including barley [Hordeum vulgare L. (Lorenz et al.,
2010; Wang et al., 2012)], maize [Zea mays L. (Kump et al.,
2011; Riedelsheimer et al., 2012; Tian et al., 2011)], and soft
wheat [Triticum aestivum L. (Souza et al., 2012)].

Trends in breeding are also affecting how trait data are
managed. Historically, traits were organized based on categor-
ical descriptors. For example, tomato fruit shape is often
classified based on categories described by the International
Union for the Protection of New Varieties of Plants (2001) and
the International Plant Genetic Resources Institute (1996).
These systems retain some use and overlay well with objective
measures but are not entirely consistent with each other nor
amenable to quantitative analysis (Rodriguez et al., 2011). The
use of ontology terms has been suggested as a way to organize
phenotypes in a standardized and quantitative format that is also
amenable to storage in databases (Brewer et al., 2006; Jung
etal., 2011; Milc et al., 2011). In addition, organizing traits into
a standardized format with a quantitative scale allows compar-
ative queries across experiments. Archives of phenotypic data
are the biological complement to open access genomic data.

The process of measuring traits should be reliable, consis-
tent, and objective if genotypic differences are to be detected
and selection optimized. Digital phenotyping has emerged as
one method to accomplish these goals (Hartmann et al., 2011).
Such methods are helping to drive the transition from categor-
ical to quantitative phenotyping that links ontology terms and
trait descriptors. Tomato Analyzer software has emerged as
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a tool to quantify fruit size, shape, and color in a semiautomated
fashion (Brewer et al., 2007; Darrigues et al., 2008; Gonzalo
et al., 2009; Gonzalo and van der Knaap, 2008). When applied
to a structured breeding population, the precise phenotypic
quantification of color increased the proportion of variance that
could be ascribed to genetic factors (Darrigues et al., 2008).
Plant breeders may therefore realize increased gain under
selection from efforts to collect and store quantitative pheno-
typic data.

All crop improvement, whether marker-assisted, genome-
wide, or phenotype-based, is grounded on our ability to
accurately partition trait variance into environmental and
genetic components. To address a lack of baseline data for
important tomato traits, we collected extensive data for a di-
verse collection of processing tomato breeding lines from North
America in a multiyear, multilocation trial. Our specific
objectives were to examine the range of variation for important
traits, to estimate the genetic contribution to these traits,
examine correlations between traits, determine how variation
is distributed within and between subpopulations within the
germplasm, and integrate this information to begin developing
multitrait selection indices. Phenotypes were collected using
standardized, quantitative methods: analysis of digital images
using Tomato Analyzer (Brewer et al., 2006), chemical tests of
fruit quality, and components of yield. Traits were classified
into Solanaceae Phenotype Ontology terms (Jung et al., 2011;
Menda et al., 2008) and stored in the Sol Genomics Network
(2012) database. We determined that significant variation exists
for economically important traits and that regionally adapted
germplasm may serve as a reservoir for trait variation.

Materials and Methods

PLANT MATERIALS. A panel of 143 processing tomato lines
(genotypes) representing breeding germplasm in North Amer-
ica was assembled by the Solanaceae Coordinated Agricultural
Project (SolCAP) (Table 1). Ninety-five lines originated from
breeding programs in the Great Lakes region of North America
(midwestern United States and Ontario, Canada) and were
considered “humid”-adapted. Twenty-six lines were derived
from germplasm adapted to Oregon or California and were
included as ‘““arid”’-adapted. The arid-adapted germplasm in-
cluded 14 lines from the Cornell University breeding program
that were developed from California-adapted germplasm with
selection in alternate generations in California or Sinaloa,
Mexico. Germplasm adapted to the production environments
in the Great Lakes region or west coast of North America
represent distinct genetic subpopulations (Sim et al., 2011).
Pedigree records were not available for 22 lines; adaptation for
these lines was reported as “undetermined.”

Seedlings were grown inside a greenhouse and transplanted
to the field 6 to 8 weeks after sowing. Transplants were spaced
0.3 m apart on raised beds with 1.54 m between beds. Ohio
trials were conducted at The Ohio State University North
Central Agricultural Research Station in Fremont, OH, which
is located in an area of commercial tomato production. Pro-
duction practices were as recommended for commercial
growers. California trials were conducted at the Campbell’s
Soup Company research station in Davis, CA, also using
standard procedures for commercial growers.

ExpPERIMENT DESIGN. Field trials were conducted with an
unbalanced design across three years. Control cultivars were
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Table 1. Processing tomato germplasm panel, including accession identification, donor institution, and regional adaptation.

Donor no./cultivar name Donor” Adaptation Donor no./cultivar name Donor Adaptation
2K1-1439 Ohio State Humid OHO05-8179 Ohio State Humid
2K1-2019 Ohio State Humid OHO05-8181 Ohio State Humid
2K1-2029 Ohio State Humid OHO05-8184 Ohio State Humid
2K1-2054 Ohio State Humid OHO05-8185 Ohio State Humid
CULBPTO04-1 Cornell Arid OHO05-8186 Ohio State Humid
CULBPT04-2 Cornell Arid OHO05-8187 Ohio State Humid
CULBPT04-3 Cornell Arid OHO05-8188 Ohio State Humid
CULBPT04-4 Cornell Arid OHO05-8193 Ohio State Humid
CULBPT04-5 Cornell Arid OHO05-8197 Ohio State Humid
CULBPT-05-10 Cornell Arid OHO05-8206 Ohio State Humid
CULBPT-05-11 Cornell Arid OHO05-8210 Ohio State Humid
CULBPT-05-15 Cornell Arid OHO05-8214 Ohio State Humid
CULBPT-05-18 Cornell Arid OHO08-5201 Ohio State Und.Y
CULBPT-05-20 Cornell Arid OHO08-5202 Ohio State Und.
CULBPT-05-21 Cornell Arid OHO08-5203 Ohio State Und.
CULBPT-05-22 Cornell Arid OHO08-5204 Ohio State Und.
CULBPT-05-9 Cornell Arid OHO08-5205 Ohio State Und.
CULBPT-A46-2 Cornell Arid OHO08-5206 Ohio State Und.
E3259 Ohio State Humid OHO08-5207 Ohio State Und.
E6203/LA4024 Ohio State Arid OHO08-5210 Ohio State Und.
F02-7530 Ohio State Humid OHO08-5211 Ohio State Und.
F03-6331 Ohio State Humid OHO08-5213 Ohio State Und.
F03-7463 Ohio State Humid OHO08-5215 Ohio State Und.
F06-1013-1 Ohio State Humid OHO08-5216 Ohio State Und.
F06-1014-1 Ohio State Humid OHO08-7438 Ohio State Und.
F06-2041 Ohio State Humid OHO08-7439 Ohio State Und.
F06-2054 Ohio State Humid OHO08-7454 Ohio State Und.
F06-2058 Ohio State Humid OHO08-7457 Ohio State Und.
FG02-188 Ohio State Humid OHO08-7458 Ohio State Und.
‘Heinz 1706°/LA4345 TGRC Humid OHO08-7459 Ohio State Und.
‘Hunt 100°/LA3144 TGRC Arid OHO08-7460 Ohio State Und.
‘M82°/LA3475 TGRC Arid OHO08-7466 Ohio State Und.
OH03-6439 Ohio State Humid OHO08-7469 Ohio State Und.
OHO05-8018 Ohio State Humid OHO08-7470 Ohio State Und.
OH05-8022 Ohio State Humid OH2641 Ohio State Humid
OH05-8025 Ohio State Humid OH3614 Ohio State Humid
OHO05-8027 Ohio State Humid OHS5-8127 Ohio State Humid
OH05-8028 Ohio State Humid OH5-8157 Ohio State Humid
OH05-8030 Ohio State Humid OHS5-8164 Ohio State Humid
OHO05-8192 Ohio State Humid OH7814 Ohio State Humid
OH05-8036 Ohio State Humid OH7870 Ohio State Humid
OH05-8040 Ohio State Humid OH7983 Ohio State Humid
OH05-8044 Ohio State Humid OH8243/PI 601423 Ohio State Humid
OHO05-8046 Ohio State Humid OHS8245 Ohio State Humid
OHO05-8048 Ohio State Humid OHS832 Ohio State Humid
OH05-8053 Ohio State Humid OH8446 Ohio State Humid
OHO05-8059 Ohio State Humid OHB8556 Ohio State Humid
OH05-8062 Ohio State Humid OH86120 Ohio State Humid
OH05-8064 Ohio State Humid OH8614-1 Ohio State Humid
OHO05-8068 Ohio State Humid OH87160 Ohio State Humid
OH05-8069 Ohio State Humid OH88119 Ohio State Humid
OH05-8070 Ohio State Humid OH9241 Ohio State Humid
OH05-8072 Ohio State Humid OH9242 Ohio State Humid
OH05-8074 Ohio State Humid OH981049 Ohio State Humid
OH05-8078 Ohio State Humid OH981067 Ohio State Humid
OH05-8079 Ohio State Humid OH981136 Ohio State Arid
OHO05-8087 Ohio State Humid OH981205 Ohio State Humid
OH05-8090 Ohio State Humid OH987034 Ohio State Humid

Continued next page
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Table 1. Continued.

Donor no./cultivar name Donor” Adaptation Donor no./cultivar name Donor Adaptation
OHO05-8095 Ohio State Humid ‘Oroma’ Oregon State Arid
OHO05-8104 Ohio State Humid ‘Pearson’/LA0012 TGRC Arid
OHO05-8109 Ohio State Humid Pet095-43/LA3528 TGRC Arid
OHO05-8117 Ohio State Humid R0OO01 Ridgetown Humid
OHO05-8124 Ohio State Humid R9812 Ridgetown Humid
OHO05-8139 Ohio State Humid R996 Ridgetown Humid
OHO05-8142 Ohio State Humid R997 Ridgetown Humid
OHO05-8144 Ohio State Humid ‘Saucy’ Oregon State Arid
OHO05-8151 Ohio State Humid ‘Sun1642’/TA491 Public Arid
OHO05-8162 Ohio State Humid UC-204B/LA4437 TGRC Arid
OHO05-8163 Ohio State Humid UC-82/LA1706 TGRC Arid
OHO05-8165 Ohio State Humid ‘Unilever265’ Public Arid
OHO05-8171 Ohio State Humid ‘PS696°/‘Perfect Peel’ Seminis Humid
OHO05-8175 Ohio State Humid

“Ohio State = The Ohio State University, Wooster; Cornell = Cornell University, Ithaca, NY; TGRC = Tomato Genetics Resource Center, Davis,
CA; Oregon State = Oregon State University, Corvallis; Ridgetown = University of Guelph Ridgetown Campus, Ridgetown, Ontario, Canada;
Public = germplasm in the public domain; Seminis = Seminis Vegetable Seeds, Inc., St. Louis.

YUndetermined adaptation.

replicated in each block to provide the ability to analyze the
data as an augmented design (Federer and Raghavarao, 1975).
In 2009, two locations (Ohio and California) were arranged as
randomized complete block designs with two replications. In
2010, plots were also organized as randomized complete blocks
with two replications intended for the Ohio and California
locations. However, the second Ohio replicate was not har-
vested as a result of field conditions. With the exception of
yield, data for all traits were obtained from seven plots. For
yield, one replication was harvested from California in 2009
and one replication was harvested from Ohio in 2010. To obtain
yield data from a third environment, an augmented design was
grown and harvested in Ohio in 2011.

EvALUATION OF PHENOTYPE. Plots were harvested when 80%
of fruit in a plot was red ripe. Plots were hand-harvested with
the exception of one replicate in California in 2009, which was
machine-harvested. Yield from this replicate was measured as
total harvested weight. In the Ohio environments, yield was
measured as total harvested weight and also as marketable yield
based on the total weight minus cull tomatoes and green
tomatoes.

A sample of 50 ripe fruit from each plot was used for
measuring shape, size, color, and soluble solids and acid
quality-associated traits. Five to 10 fruit from each plot were
sliced longitudinally and the same number were cut along
a latitudinal axis. Half of each fruit was placed on a flat-bed
scanner and scanned to create a single digital image with
multiple fruit for each plot. Images were saved in the .jpg
compressed image format at a resolution of 100 dpi. Digital
images of each plot were analyzed using Tomato Analyzer
software [Version 2.2 (Brewer et al., 2006)]. The external fruit
border, pericarp border (latitudinal slice only), and rotation of
the fruit were adjusted manually as necessary. Six size traits and
28 shape traits were obtained from the longitudinal slices.
Three shape traits and 11 color traits, including color unifor-
mity as defined by the percentage of surface area that was “red”
(hue 0-50) or “yellow” (hue 70-100), were obtained from the
latitudinal slices. Four color traits (R, G, B, and luminosity)
were obtained using the RGB color scale used by computers
and seven (L*, a*, b* hue, chroma, and the two color
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uniformity traits) were obtained using the L*a*b* color space,
which is a universal color space with defined standards
(Commission Internationale de 1’Eclairage, 1978).

Although shape traits have been previously defined (Brewer
et al., 2006; Gonzalo et al., 2009; Gonzalo and van der Knaap,
2008), the descriptions are not intuitive; therefore, we briefly
describe them here for important traits. The measure “external
index I”” describes fruit shape elongation as the ratio of length to
width. “Proximal angle macro” measures pointedness at the
stem end of the fruit as the angle at which best-fit lines drawn on
either side of the end pass through 20% of the perimeter.
“Circular” is a measure of how well the fruit fit a circle of
diameter that is equivalent to the width and provides an
estimate of how round the fruit are. “Shoulder height” is the
ratio of average height of the fruit above the stem scar to the
maximum height. “Proximal area indentation” is expressed as
a ratio of the area bounded by the fruit shoulders on either side,
the shoulder height at the top, and the stem scar at the bottom
to the area of the fruit. “Ovoid” is a measure of asymmetrys; it is
the ratio of the average width above and below the maximum
width.

Ten fruit per plot were quartered, and a section from each
fruit was combined and homogenized in a blender to evaluate
soluble solids, pH, and titratable acidity. Soluble solids were
measured using an refractometer (Mark I1 Plus; ABBE, Depew,
NY). Puree was filtered through a laboratory wipe, and re-
fractive index was recorded. A sample of homogenate was
diluted by adding 40 mL of distilled water to 10 mL of
homogenate to measure pH and titratable acids using a standard
laboratory pH meter (¢ 45; Beckman, Brea, CA). Titratable
acidity, which is predominantly the result of citric acid in
tomato, was measured by titrating with 0.1 N NaOH to pH 8.2.
Percent citric acid was calculated using the following equation:

percent citricacid = {[(mL NaOH X N NaOH

X 64 mg/meq)/mL sample titrated]
X dilution} X 100

where 64 mg/meq is the equivalent weight of citric acid
(Friedrich, 2001).
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STATISTICAL ANALYSIS. All statistical analyses were per-
formed using R software Version 2.13 for Mac (R Development
Core Team, 2011). For each trait, components of phenotypic
variance were estimated from analysis of variance using
restricted maximum likelihood methods. The linear mixed
effects “Imer” command in the Ime4 package (Bates et al.,
2011) was used to estimate variance components. For each trait
except yield, the following linear model was used:

Yijk=u+Gi+ L+ Y+ R(Yk*Lj) +GL;; + GYik + &k

where Yy is the trait measured, [ is the overall mean, G; is the
effect resulting from the ith genotype, L; is the effect resulting
from the jth location, Y is the effect resulting from the kth year,
R(Y*L;) is the effect resulting from replicate within year X
location, GL;; is the effect resulting from genotype X location
interaction, GYjy is the effect resulting from genotype X year
interaction, and & is the residual error (effect resulting from
experimental error). All effects were treated as random.

For yield measured across environments (location X year),
the following model was used:

Yij =|.L+Gi+Ej+GEij +81j

where Yj; is yield, u and G; are as described previously, E; is the
effect resulting from the jth environment, GE;; is the effect
resulting from genotype X environment interaction, and g;; is the
residual error.

Best linear unbiased predictors were estimated for each line
for each trait using the same models used to estimate variance
components. The random effect “ranef”” command in the Ime4
package was used to estimate BLUPs for all terms in the model
(Bates et al., 2011). The BLUPs for genotypes were extracted
and used in principal components analysis (PCA) and correla-
tion analysis. PCA was performed using the “prcomp” com-
mand. PCA identified which traits explained the most
phenotypic variation among the germplasm evaluated. Pearson
correlation coefficients and corresponding probability values
were calculated between all pairwise combinations of traits.
The “correlation” function in the agricolae package (de
Mendiburu, 2010) was used because it provides an improved
structure of the output relative to the core package.

To decide which traits were most relevant in the germplasm
with respect to variability and correlation with other traits,
eigenvector loadings from PCA, Pearson correlation coeffi-
cients, and proportion of variance resulting from genetics (i.e.,
genotype) were considered. Color traits measured using the
L*a*b* color space were preferentially retained because this is
a standard for universal color measurement, whereas RGB
values are subject to software interpretation (Darrigues et al.,
2008). Eigenvector loadings from PCA were inspected and
traits that contributed high positive or negative loadings to the
first three PCs were retained. Pearson correlation coefficients
were used to determine traits that were highly correlated. When
two traits were highly correlated (> 0.80) and one of the traits
had a higher proportion of variance resulting from genetics, the
trait with the higher value was retained. Finally, any traits that
had a proportion of variance resulting from genetics greater
than or equal to 0.05 and that were not already selected based on
the preceding criteria were retained for further analysis.

Two approaches were used to evaluate differences between
regional processing germplasm. First, analysis of variance
(ANOVA) was performed for each of the first three PCs with
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the score for each line as the dependent variable and germplasm
groups treated as levels. Levels were assigned to each line
according to whether the line was adapted to California/Oregon
(arid), the Great Lakes (humid), or was of undetermined adapta-
tion. ANOVA was also performed on the BLUPs for the retained
traits with levels as described previously. In both cases, a simple
linear model was evaluated. When the effect of adaptation was
significant (P < 0.05), a Tukey’s test was performed using the
multcomp package (Hothorn et al., 2008).

Results

Raw data in flat file format are available through the
Solanaceae Coordinated Agricultural Project (2012) and orga-
nized according to phenotype ontologies in the Sol Genomics
Network (2012) database. We narrowed the number of traits for
which we present data from 52 to 22 (Table 2). Thirty-one
shape traits, 11 color traits, three chemical traits, six size traits,
and total yield were reduced to seven shape traits, six color
traits, three chemical traits related to fruit quality, five size
traits, and total yield. Traits were selected based on the
proportion of variance resulting from genetics, high positive
or negative loadings to the first three PCs, and correlations
between traits. In general, the five traits that explained the most
variation for each of the first three PCs were retained with the
exceptions of average green (fruit color), two redundant shape
indices, and the fruit shape traits “proximal blockiness,”
“triangle,” and “horizontal asymmetry.ov”’ (Table 2). Average
green was eliminated because it is described in the RGB color
space, which is subject to software interpretation, and was
highly correlated with color measures in the L*a*b* color
space. The three shape indices were perfectly correlated;
therefore, only “external index I’ was retained. Three shape
traits were not retained because the proportion of genotypic
variance was less than 0.05. Yield was retained as a result of its
economic importance despite a low proportion of variance
resulting from genetics. Of the 22 traits retained, BLUPs were
estimated on a per-genotype basis. As expected, there was
a strong positive linear relationship between BLUPs and means
with shrinkage of the BLUPs toward the population average
(Fig. 1).

Principal components analysis was conducted to determine
which traits were the major sources of variation within the
germplasm panel. Cumulatively, the first three PCs explained
57.1% of the variation. PC1 accounted for 28.0% of the
variation and was weighted toward traits describing shape:
“proximal angle macro,” “external index I,” and “circular.”
PC2 was also weighted toward traits describing shape (“hor-
izontal asymmetry.ov,” “triangle,” “proximal blockiness,”
“ovoid”) as well as color (L*). The second PC accounted for
16.2% of the variation. PC3 accounted for 12.9% of the
variation and was weighted toward the traits describing color
and size: percent yellow tissue, a*, hue, perimeter, and area.

Pearson correlation coefficients were calculated between
each pair of traits using the estimated BLUPs (Table 3). There
were significant correlations among soluble solids and acid
quality, yield, color, shape, and size traits. In Ohio, total
harvested samples were sorted into red-ripe, cull (cracked or
diseased fruit), or green fruit. Total yield and marketable (red-
ripe) yield measured in Ohio were significantly correlated (» =
0.92, P < 0.00001; data not shown). Soluble solids were
negatively correlated with yield (r = —0.31, P = 0.0002),
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Table 2. Variance components for important yield and quality traits in tomato.

) ) Replication
Trait Variance component (proportion of total)” within
category Genotype Genotype X location Genotype X yr Year Location year X location Residual
Yield Yield (kg-ha™) 0.03 0.00 NA NA 0.85 NA 0.11
Quality Soluble solids concentration (%) 0.28 0.01 0.01 0.05 0.27 0.10 0.37
pH 0.16 0.00 0.03 0.11 0.20 0.00 0.51
Titratable acids (g/100 mL) 0.13 0.00 0.02 0.04  0.61 0.06 0.21
Fruit color Proportion red tissue 0.20 0.11 0.03 0.00 0.26 0.01 0.40
Proportion yellow tissue 0.41 0.25 0.03 0.01 0.01 0.00 0.29
L* 0.29 0.07 0.03 0.10  0.00 0.01 0.50
a* 0.12 0.02 0.01 0.18 0.53 0.00 0.13
b* 0.17 0.10 0.04 0.02 027 0.00 0.40
Hue 0.18 0.04 0.02 0.09  0.52 0.01 0.16
Fruit size ~ Perimeter (cm) 0.08 0.07 0.06 0.00  0.31 0.00 0.48
Area (cm?) 0.10 0.07 0.06 0.00 0.33 0.00 0.48
Width midheight (cm) 0.06 0.06 0.05 0.01 0.38 0.00 0.45
Height midwidth (cm) 0.30 0.08 0.05 0.02  0.08 0.00 0.48
Maximum height (cm) 0.05 0.06 0.05 0.01 0.38 0.00 0.45
Fruit shape External index I 0.51 0.03 0.01 0.05 0.10 0.07 0.29
Proximal angle macro (degrees) 0.07 0.03 0.00 0.33 0.16 0.02 0.40
Distal angle macro (degrees) 0.09 0.00 0.00 0.30 0.18 0.00 0.43
Circular 0.46 0.03 0.02 0.16  0.02 0.00 0.32
Shoulder height 0.08 0.05 0.01 0.02  0.19 0.03 0.65
Proximal area indentation 0.08 0.04 0.02 0.03 0.32 0.00 0.52
Ovoid 0.05 0.06 0.02 0.00  0.20 0.00 0.67

*Yield was measured for 143 processing lines (genotypes) in three environments; one replication in California in 2009, one replication in Ohio in
2010, and one replication in Ohio in 2011. Fruit soluble solids, acid quality (pH, titratable acids), color, shape, and size were measured in 2009
and 2010 in Ohio and California with two replications per location per year.

NA = not applicable.

although positively correlated with titratable acids (» = 0.43,
P <0.0001). There were also significant correlations between
color traits. L* was negatively correlated with a* and positively
correlated with b* (r = —0.64 and 0.77, P < 0.001 for both
comparisons). The color uniformity traits were correlated with
L*, a*, and b*. The correlations between percent yellow tissue
and a*, percent red tissue and L*, and percent red tissue and b*
were negative (range of » = —0.76 to —0.93, P < 0.0001). Hue
was also correlated with the color uniformity traits (» = —0.83
and 0.95, P <0.0001). For processing tomatoes, low values of
L* and hue and high values of percent red tissue are generally
desirable.

Size and shape traits were also significantly correlated. The
size traits were generally positively correlated (range of » for
significant correlations = 0.47 to 1.00, P < 0.0001); width
midheight and maximum height were perfectly correlated.
Height midwidth and ‘“‘external index I” were positively
correlated (r = 0.85, P < 0.0001); all other significant
correlations with shape were negative (range of » = —0.25 to
-0.97, P = 0.02).

Variance components resulting from genetic, environmen-
tal, and genetic-by-environment interaction factors were esti-
mated for each retained trait using REML (Table 2). Yield had
the lowest proportion of genetic variance (0.03), whereas fruit
quality (variance range = 0.13-0.28) and color traits (variance
range = 0.12-0.41) had relatively high levels of genetic
variance. Fruit size and shape traits ranged from 0.05 to 0.51.
Notable shape traits with high genetic variance were “‘external
index I,” which had the highest proportion of variance resulting
from genetics (0.51), height midwidth (0.30), and “circular”
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(0.46). Overall, fruit soluble solids and acid quality, color, and
several size and shape traits had a relatively high proportion of
variance resulting from genetic effects with low proportions of
variance resulting from genetic interaction effects.

The first three PCs could distinguish regionally adapted
germplasm. Using ANOVA and a post hoc Tukey’s test with
the eigenvector loading for each accession for PC1, PC2, or
PC3 as the continuous variable, cultivars adapted to arid or
humid production systems could be distinguished (P < 0.01 for
all comparisons) (Fig. 2). Regionally adapted germplasm could
also be distinguished based on shape, size, color, and quality
traits using the trait value for each accession as the continuous
variable. “External index I’ was greater in arid-adapted
germplasm compared with humid-adapted germplasm (P =
0.0016) (Fig. 1E). Conversely, “proximal angle macro” was
greater in humid-adapted germplasm compared with arid-
adapted germplasm (P = 0.024). Regionally adapted germ-
plasm could also be distinguished based on perimeter, area, and
height midwidth. All three traits were greater in arid-adapted
germplasm compared with humid-adapted germplasm (P <
0.0001 for all comparisons) (Fig. 1). Humid-adapted germ-
plasm had higher yield compared with arid-adapted germplasm
(P = 0.0025), although arid-adapted germplasm had higher
soluble solids (P <0.0001) (Fig. 1A-B). The color traits percent
red and L* could be used to distinguish humid from arid-
adapted germplasm (P = 0.0018 and 0.027, respectively).
Humid-adapted germplasm had higher percent red (Fig. 1C)
and lower L*. Arid-adapted germplasm grown in Ohio had
higher percent cull compared with humid-adapted germplasm
(P < 0.05; data not shown). Overall, shape, size, color, yield,
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Fig. 1. Correspondence between best linear unbiased predictor (BLUP) and mean of each accession in the processing tomato germplasm for (A) yield, (B) soluble
solids, (C) percent red tissue, (D) hue, (E) external index I, and (F) height midwidth. Humid-adapted accessions, arid-adapted accessions, and accessions with
undetermined adaptation are labeled with triangles, circles, and crosses, respectively.

and soluble solids and acid quality traits could all be used to
distinguish regional breeding programs.

Discussion

We estimated variance components and proportion of
variance resulting from genetics for 51 traits and have stored
these data as flat files (Solanaceae Coordinated Agricultural
Project, 2012) and in an ontology database (Sol Genomics
Network, 2012). Many of these traits contain redundant in-
formation related to fruit shape, size, and color allowing us to
reduce the number of highly relevant traits to 22 based on
objective criteria. We estimated phenotypic values across
environments as BLUPs, providing a baseline for trait values.
An important outcome of our analysis is the discovery that
regionally adapted germplasm provides a source of trait
variation. The humid-adapted germplasm may serve as a source
of color uniformity, deep red color, and shape variation. In
contrast, the arid-adapted germplasm could serve as a source of
increased soluble solids and fruit size. Differences in regional
germplasm are likely the result of human selection for varying
market needs and are reflected in genetic substructure (Sim
et al., 2011).

The estimated genetic components of variance were low to
moderate for most traits. The relatively low genetic variance
may be a reflection of the fact that the germplasm panel
consisted of cultivars and breeding lines that have experienced

J. AMER. Soc. Hort. Sci. 137(6):427-437. 2012.

strong selection. In addition, low genetic variance may reflect
complex genetic inheritance and/or a high environmental
influence on trait expression. Previous studies, conducted in
the context of biparental mapping, suggest that the genetic basis
of tomato fruit size, shape, and soluble solids and acid quality
traits are the result of many quantitative trait loci [QTL (Azanza
etal., 1994; Brewer et al., 2007; Chen et al., 1999; Gonzalo and
van der Knaap, 2008; Grandillo et al., 1999; Osborn et al., 1987;
Saliba-Colombani et al., 2001; Tanksley et al., 1996; Tanksley
and Hewitt, 1988)].

Improvement of quantitative traits using conventional
marker-assisted selection has had limited success relative to
expectations (Bernardo, 2008; Heffner et al., 2009). An
emphasis on trait and linkage discovery in biparental popula-
tions, small population sizes, marker density, and marker phase
relative to QTL all contribute to the inability to translate
discovery of linkage into marker-assisted breeding strategies
(Bernardo, 2008; Xu and Crouch, 2008). Research imple-
mented on commodity grains suggests several strategies that
might improve breeding and marker-assisted breeding of
horticultural crops, including tomato. Important features of
these strategies include incorporating pedigree (Crossa et al.,
2010) or kinship data (Heffner et al., 2011) to strengthen
estimates of trait BLUPs, and experimental designs that shift
the balance of genotypic and technical replication to increase
population sizes (Federer and Raghavarao, 1975). Incorpora-
tion of pedigree information, increased population sizes, and
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use of BLUPs are driven by a desire to incorporate GWS into
plant breeding (Meuwissen et al., 2001). Models for GWS in
plants have been developed and evaluated for maize using
simulated data and suggest that gain under selection can be
improved, especially when selection is tied to increased
population turnover (Bernardo, 2009; Bernardo and Yu,
2007). More recently, models for GWS have been evaluated
using actual data or a combination of real and simulated data for
barley (Iwata and Jannink, 2011), maize (Zhao et al., 2012), oat
(Avena sativa L.) (Asoro et al., 2011), and wheat (Heffner et al.,
2011). These analyses support the idea that gain under selection
can be improved through GWS. Developing robust GWS
approaches for horticultural crops will require not only
a renewed commitment to collecting objective data, but also
a commitment to increasing population sizes.

In addition to some structural changes in breeding strategies,
attention will need to be directed toward multitrait selection
indices (MTTIs). For horticultural crops, selection is often based
on quality traits in addition to yield. Multitrait selection models
assign relative value to traits, yet determining relative value
remains a challenge for many crops where perceived quality is
important. In animal breeding, net merit is linked to economic
value, and thus MTTIs are directly modeled based on economic
return (Hazel, 1943; Weller, 1994). When applying MTI,
examining correlations between traits becomes particularly
important. Like in numerous previous studies, soluble solids
were strongly negatively correlated with yield (Azanza et al.,
1994; Grandillo et al., 1999; Tanksley et al., 1996; Tanksley
and Hewitt, 1988). For both traits, high values are desired.
Determining how to balance the negative correlation can be
done, like in animal breeding, based on economic value to the
grower or processor. Alternatively, minimum standards can be
set for one trait while selecting for improvement in another.

The challenge of developing MTI becomes clear when one
examines what the market measures, perceptions of what traits
are important, and what the market is actually willing to pay for

J. AMER. Soc. Hort. Sci. 137(6):427-437. 2012.

ful. Contracts may also add incentives for
quality. Fruit color is rewarded by contracts
in Ontario and the midwestern United States
with a tiered pricing structure paid per tonne
depending on the grade option(s) chosen by
the processor (Ontario Processing Vegetable
Growers, 2011). Based on our analysis,
selection for absolute color should focus on
L* (identified as a contributor to PC2) and
hue* (contributing to PC3). Because a* and
hue are strongly correlated (negatively), selection for both
would be redundant. Selection for hue is favored as a result of
a marginally higher genetic contribution and because, similar to
L*, a lower values is desirable. PC analysis also suggests that
selection for color uniformity should focus on reducing the
percentage of yellow tissue. Thus, the three most important
color traits involve selection for lower numbers, a fact that
will facilitate scaling. Ideally, the weight of the three color
traits relative to yield and other quality traits would be de-
termined by market forces as stipulated in contract structures.

Our analysis also detected significant variation for traits
related to both shape and size of tomato fruit. Fruit size is
a component of yield and will also affect market use. Fruit size
and product recovery after peeling for value-added products
may be related with larger fruit leading to higher recovery, thus
affecting factory yield (Barringer et al., 1999; Garcia and
Barrett, 2006). In contrast, whole peel tomato size is de-
termined by can size, with a desired number of five fruit in
a number 300 can (450 mL). Anecdotal information suggests
that proximal or distal indentation may affect peel retention and
thus processing costs for value-added products. Finally, shape
is a key trait for highly specialized markets such as “Italian”
whole peel tomatoes, characterized by extreme fruit-shape
index (greater than 1). Incorporating shape and size information
into a selection index will require that these traits be more
directly linked to value either to growers or processors.

As we continue to incorporate genome-assisted selection
methods into breeding programs, development of criteria for
selection, including MTI based on market value, will be
important to stimulate efforts to achieve gain under selection.
The need for this link between trait and value is most clearly
illustrated by the tradeoff between soluble solids and yield. The
economic value of higher soluble solids remains inconsistently
rewarded in contracts. Although growers and processors
recognize the value of high soluble solids in ripe tomato fruit
for the production of paste, contract rewards for high solids are

15
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often revenue-neutral. In some production areas, a lack of
incentive is by design. For example, under rain-fed agriculture
in the Great Lakes region, there is no reward for high solids in
the contract because of the complexity of management trade-
offs, including weather and plant investment in foliar health.
Growers could manage for higher solids but lose any gains
resulting from precipitation at the end of the season. Thus,
rewarding the value of solids in a contract above minimum
market standards is not practical as a result of the growth
environment. In the arid environment of California, contracts
sometimes include incentives for soluble solids, the system
rewards management, rather than choice of genetics. Cultivars
that meet minimum industry standards are grouped. Solids are
measured in each load delivered and the grower is either
rewarded or penalized based on how the soluble solids level
compares with the three- to five-year average for the cultivar
group. Rates for soluble solids are negotiated based on the goals
of the processor. The contract structure typically penalizes high
tonnage growers with very low levels of soluble solids. For
growers with very high soluble solids, the bonus for increased
solids does not balance the lost revenue associated with lower
yield. Although this approach maintains solids, it does not lead
to gains over time (Grandillo et al., 1999). The contractual
agreements between growers and processors are not always
structured to reward what some members of the sector value. If
the structure of contracts rewarded higher soluble solids based
on cultivar choice, then breeders would place a much higher
priority on this trait and we predict a corresponding shift in the
soluble solids levels that has not yet occurred (Grandillo et al.,
1999). Alternatively, soluble solid levels could be indexed to
minimum standards in MTI, in which case we predict mainte-
nance of the status quo. Over the past 10 years, soluble solids in
California have not fluctuated much from an industry mean
value of 5.2% soluble solids estimated across the top 50
cultivars [California Tomato Research Institute (CTRI), 2002,
2011]. This observation has led to a suggested industry
minimum standard of 5.0% soluble solids. However, over
20% of the top 50 cultivars and three of the top 10 cultivars
fall below this standard (CTRI, 2011).

The phenotypic data collected for this study provide
a baseline data set describing trait variance, which will prove
useful in developing selection models. The data collected are
publicly available in spreadsheet format (Solanaceae Co-
ordinated Agricultural Project, 2012) and in searchable
database format on the Sol Genomics Network (2012). Signif-
icant genetic variation exists for fruit size, shape, color, soluble
solids and acid quality, and yield in the germplasm panel. Lines
from regional breeding programs may serve as a valuable
source of genetic variation for germplasm improvement. A
technological shift in focus to include genome-wide marker
data and estimates of breeding value as selection criteria will
likely also force the development of MTI for horticultural
crops. These MTIs will need to balance correlated traits and
must be consistent with market valuation. The fact that quality
traits rewarded in contracts in the Great Lakes region are the
traits for which lines adapted to the region tend to excel
suggests that economic forces can shape selection. Despite this
example, we believe a gap exists between what breeders select
for and what the market is currently willing to pay for.
Resolving this gap will require adjustments to how MTIs are
incorporated into selection strategies or a shift in how the
processing industry values traits.
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