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Abstract. The relationship of plant growth habit to establishment of a successful symbiosis between Phaseolus vulgaris 
L. and Rhizobium phaseoli was examined. A determinate and an indeterminate cultivar of bean were inoculated with 
a pure culture of R. phaseoli 127K44, and plant development was measured using the plastochron index. Time required 
to nodulate as determined by nodule count did not vary between plant types. The timing, duration, and overall success 
of the symbiosis as measured by increased acetylene reduction, dry weight, and transport of ureides and amino acids 
were related to the period of exponential leaf expansion in both the determinate and indeterminate cultivar.

Establishment of a successful symbiosis for nitrogen fixation 
involves a complex sequence of genetic, physiological, and de-
velopmental interactions between the host legume and a strain 
of Rhizobium (4, 5). Many studies have focused on the role of
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manuscript. The cost of publishing this paper was defrayed in part by the 
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be hereby marked a d v e r t i s e m e n t solely to indicate this fact.

the bacteria in symbiosis (4, 5). Recently, attention has been 
directed toward the role of the host in formation and mainte-
nance of symbiotic associations and delineation of the extent to 
which this role can be manipulated (10).

Nodulation and nitrogen fixation in P . vulgaris, the common 
bean, is variable (8). An abundance of ineffective strains of R . 
phaseoli combined with the poor response of several P. vulgaris 
genotypes to effective strains of Rhizobium (9) have made rou-
tine study or application of symbiotic associations in this plant 
problematical. Recent reports have suggested that plant devel-
opment in beans may play a significant role in limiting the 
establishment and duration of the symbiosis. A lack of coordi-
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nation between plant and rhizobial development has been shown 
to result in ineffective symbiosis in P. vulgaris ‘Red Kidney’ 
(1, 2). In these studies, manipulation of plant development through 
prevention of flowering increased vegetative growth, acetylene 
reduction activity, ureide transport, and nodule longevity (2). 
These data suggested that patterns or processes in plant devel-
opment altered the effectiveness of a symbiosis with a given 
rhizobial strain.

Although the capacity for nitrogen fixation differs between 
determinate and indeterminate cultivars of Phaseolus (7-9), in-
formation on the role of host development and physiology in 
formation and maintenance of an effective symbiosis is lacking 
for both plant types. Our objective was to determine the rela-
tionship between plant development and the formation and 
maintenance of effective symbioses between P. vulgaris and R. 
phaseoli.

Materials and Methods
Seeds of P. vulgaris cv. Sanilac (determinate, type lb) and 

Puebla 152 (indeterminate, type 3) (3) were surface-sterilized 
in 0.5% sodium hypochlorite (pH 7.0) for 2 min, rinsed, scar-
ified, and planted in 25.4-cm (10-inch) pots in 2 sterilized sand 
: 1 perlite (v/v). Six seeds were planted per pot, then thinned 
for uniform shoot growth to three plants per pot —10 days after 
germination. Each seed was inoculated at planting with —5 x 
108 cells of a pure culture of R . phaseoli 127K44 (gift of S. 
Smith, Nitragin Corp., Milwaukee, Wis.).

Plants were grown in environmental chambers using a 16-hr 
photoperiod. Day and night temperatures were 25° ± 2°C and 
19° ± 2°, respectively. Relative humidity was 65% ± 3%. 
Light in the chambers was maintained at 550 pumol-s'1 *irr2 
with a mixture of high-intensity discharge lamps and mercury 
arc lamps. Inoculated plants were watered on alternate days for 
the first 14 days with a modified Hoagland solution containing 
14 |j im N; thereafter, minus N solution was used. On alternate 
days control plants were fed nutrient solution containing 140 
P-M N. Control plants did not nodulate during the experimental 
period.

Plant development was measured using the plastochron index 
(PI) (6) and plotted as a function of chronological age. PI cal-
culations were based on the length of the middle lamina of 
trifoliolate leaves from 25 plants. Measurements were made on 
alternate days using a reference length of 15 mm to minimize 
manual manipulation of the leaves. The term “ plastochron” 
refers to the number of days required for successive leaves to 
reach the reference length.

Six plants were decapitated 1 cm above soil level at weekly 
intervals and xylem sap collected for a period of 15 min as it 
exuded from the cut stump. The first 25 pi was counted as part 
of the sample volume but was not assayed to minimize contam-
ination. Replicate samples were combined and net volume mea-
sured, and then frozen for subsequent analysis of ureides (18), 
total amino acids (13), and individual amino acids by HPLC 
following precolumn derivatization with o-phthal-dialdehyde (17). 
Entire root systems were harvested for the acetylene reduction 
(AR) assay (11) following collection of xylem exudate. Upon 
completion of the assay, nodules were removed from the root 
and counted. Root, shoot, and nodule material was dried for 72 
hr at 70°C for determination of dry weight.

Net transport of ureides, total amino acids, and the amino 
acid composition of xylem exudate were compared at plasto-
chron indices corresponding to early vegetative (V2), late veg-
etative (V5-V7), and early pod development (R3) stages of

growth. Experiments were terminated at mid-pod development 
(R5-R6) (12).

Results
Leaf expansion in shoots of the indeterminate ‘Puebla’ was 

initially slower than in the determinate ‘Sanilac’. Growth analy-
sis of inoculated ‘Puebla’ and ‘Sanilac’ showed that the duration 
of the plastochron for ‘Sanilac’ became constant —21 days after 
planting (DAP) and remained constant until flowering occurred 
at the apex 43 DAP (Fig. 1). During this time, the plastochron 
for ‘Sanilac’ was 5.9 days. In ‘Puebla’, a constant plastochron 
of 3.9 days was reached 30 to 32 DAP, and the length of the 
plastochron remained constant until early pod fill.

Measurable AR was detected in both cultivars at a plant plas-
tochron index of 2 to 3, when the second trifoliolate leaf was 
—30% expanded. AR in ‘Puebla’ and ‘Sanilac’ was not signif-
icantly different at this point (Fig. 2), then increased in each 
cultivar as the plastochron became constant. Subsequent decline 
in AR in ‘Sanilac’ occurred during flowering and early pod fill. 
In ‘Puebla’, AR increased through the first 49 days of growth 
before leveling off at 16 p.mol/plant per hr as growth slowed.

Fig. 1. Change in plastochron index with time for determinate ‘San-
ilac’ and indeterminate ‘Puebla’ cultivars of beans inoculated with 
R. phaseoli 127K44. Pllr and S(lr are the times at which transition 
to flowering was first observed. Vertical bars represent s e .

Days After Planting

Fig. 2. Acetylene reduction as a function of plant age in the deter-
minate ‘Sanilac’ and indeterminate ‘Puebla’ inoculated with/?, phas-
eoli 127K44. Vertical bars represent s e .
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Dry weight accumulation in roots and shoots of both cultivars 
did not differ significantly between the cultivars during the first 
28 days (Fig. 3). Dry weight increase in ‘Puebla’ between 30 
and 65 DAP was partitioned to the shoot. By the conclusion of 
the experiment, the shoot : root ratio for ‘Puebla’ was 7.4. In 
‘Sanilac’, the shoot : root ratio at flowering was 1.3 and did 
not increase significantly thereafter.

Greater than 97% of ureides were transported as allantoin in 
both cultivars. At 21 DAP, ureide concentration in ‘Sanilac’ 
xylem exudate was twice that of ‘Puebla’. The maximum con-
centration of ureide transported per milliliter of sap was equal 
in ‘Sanilac’ and ‘Puebla’ at days 35 and 47, respectively (Fig. 
4). Amino acid concentration in xylem sap exudate was initially 
<0.25 pumol-mR 1 in both cultivars (Fig. 4), then increased and 
appeared to plateau at a time corresponding to maximum AR in 
each cultivar. A second increase (34% to 39%) in the concen-
tration of amino acids in the xylem exudate occurred after AR 
reached a maximum and began to decline.

Amino acid analysis at plastochron indices equivalent to early,
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Ô
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Days After Planting

Fig. 3. Change in root and shoot dry weights for determinate ‘San-
ilac’ and indeterminate ‘Puebla’ inoculated with R. phaseoli 127K44. 
Vertical bars represent s e .
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Fig. 4. Ureide and amino acid transport in xylem exudate of deter-
minate ‘Sanilac' and indeterminate ‘Puebla’ inoculated with/?, phas-
eoli 127K44.

mid-vegetative, and early reproductive phases of growth (Fig.
5) showed that xylem exudate of ‘Sanilac’ contained between 
10% and 20% glutamine and 15% to 25% asparagine, as well 
as significant quantities of aspartate and alanine. Asparagine 
concentration in the xylem exudate of ‘Puebla’ increased from 
10% to 27% of the total during the growth period, while glu-
tamine concentrations in ‘Puebla’ remained below 10%.

Calculation of total amino acid and ureide transport at these 
developmental stages (Table 1) showed that the larger volume 
of xylem sap transported by ‘Puebla’ throughout the experiment 
resulted in 1.5 to 3 times more ureide and 1.5 to 2 times more 
amino N being transported from ‘Puebla’ roots than ‘Sanilac’ 
roots.

Discussion
Our experiments demonstrated that the plastochoron index, 

as a function of chronological age, was an effective means of 
comparing plant development with the status of N2 fixation ac-
tivity in these cultivars. The development of an effective sym-
biosis, as determined by change in AR, profiles of ureide and 
amino acid transport in xylem exudate, and an increase in dry 
weight, occurred as the plastochron approached a constant value. 
These results support those of Snyder and Bunce (16), who 
concluded that plastochron rate provided a sensitive means of 
comparing growth of variously treated cultivars of soybeans 
grown under similar conditions and was highly sensitive to the 
nitrogen status of the plant.

On the basis of duration of plastochron, an effective sym-
biotic association was established —12 days later in the inde-
terminate ‘Puebla’ than in the determinate ‘Sanilac’. N2 fixation 
in ‘Puebla’, however, continued well into pod fill.

The relationship between plastochron and physiological pa-
rameters indicative of successful nitrogen fixation is complex. 
Not only is the shoot important as a source of photosynthate for 
nodule development and maintenance (15), but senescence of 
lower leaves in bean has been shown to alter photosynthate

Sanilac ,____ Puebla

Fig. 5. Composition of amino acids in xylem exudate at chronological 
ages corresponding to early vegetative (V2), late vegetative (V5- 
V7). and early pod development (R3). The determinate bean ‘San-
ilac' and indeterminate bean ‘Puebla' were both inoculated with /?. 
phaseoli 127K44.
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Table 1. Volume of sap exudate and net transport of ureides and amino acids by P. vulgaris cvs. Sanilac and Puebla.

Cultivar
Plastochron

index
Growth
stage'

Exudate
(|xl/plant per hr)

Ureides
(|jig/plant per hr)

Amino N
(nmol/plant per hr)

Sanilac 2.5 V2 60 ± 30y 35 19
5.5 V5/R1 113 ± 25 95 52
NAX R3 110 ± 63 52 91

Puebla 2.2 V2 163 ± 21 57 29
7.5 V7/R1 218 ± 22 166 46

12.3 R3 303 ± 38 179 206
'Growth stages; V2 (early vegetative); V5-7 (late vegetative); R1 (early flowering); R3 (early pod development).
y ±  SE.

XNA; Plastochron index was not measured, as flowering had occurred at the apex.

partitioning and to limit N2 fixation (19). Of particular interest, 
Malik (14) showed that the presence of developing leaves in 
soybean was more important to duration of the symbiosis than 
total leaf area. Plant age and senescence in Malik’s study ap-
peared to contribute to symbiotic decline despite grafting to 
double leaf area. These reports are particularly interesting in the 
context of comparison of symbiotic development in determinate 
and indeterminate cultivars of P. vulgaris. The results suggest 
that, in P. vulgaris, the physiological patterns of effective sym-
biosis with a single rhizobial strain are similar. Duration of the 
symbiosis, however, appears related to the potential for ex-
tended shoot growth, as evidenced by an indeterminate growth 
habit.
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