Agr. Res. 15:27-31.

- 2. Anonymous. 1967. Manual for fumigating Mexican fruits with ethylene dibromide. ARS 82-7. Plant Quarantine Division, ARS, U.S. Dept. Agr.
- 1969. Official FDA tolerances. Nat. Agr. Chemicals 3 Assoc. N.A.C. News 27:1-31.
- _. 1970. Fruits and Vegetables. Quarantine 56. Code of 4. Federal Regulations. Title 7 - Agriculture. Chapter III - ARS, U.S. Dept. Agr. Part 319 - Foreign Quarantine Notices, Subpart - Fruit and Vegetables.
- 5. Baker, A. C. 1939. The basis for treatment of products where fruitflies are involved as a condition for entry into the United States. U.S. Dept. Agr. Circ. 551.
- 6. Bielorai, R., and E. Alumot. 1966. Determination of residues of a fumigant mixture in cereal grain by electron capture gas chromatography. J. Agr. Food Chem. 14:622-625.
- 7. Chalutz, E., S. Biron, and E. Alumot. 1973. Reduction of ethylene dibromide peel injury in citrus fruits by thiabendazole. Bul. Inter. Instr. Refrig. Annexe. 1973-3:205-209.

- , M. Schiffmann-Nadel, J. Waks, E. Alumot, Y. Carmi, and J. Bussel. 1971. Peel injury to citrus fruit fumigated with ethylene dibromide. J. Amer. Soc. Hort. Sci. 96:782-785.
- 9. Grunberg, A., K. Polacek, and J. Peleg. 1956. Fumigation trials with ethylene dibromide for the control of eggs and larvae of Ceratitis capitata (Wied.) in citrus fruit. Bul. Entomol. Res. 46:803-811.
- 10. Kamburov, S. S. 1972. Artificial infestation of citrus fruits with the Mediterranean fruit fly. Ann. Entomol. Soc. Am. 65:1238-1239.
- 11. Lindgren, D. L., and W. B. Sinclair. 1951. Tolerance of citrus and avocado fruits to fumigants effective against the Oriental fruit fly. J. Econ. Entomol. 44:980-990.
- . 1953. Effect of ethylene dibromide and 12 _, and ___ ethylene chlorobromide fumigation on citrus and avocado fruits. J. Econ. Entomol. 46:7-10.
- 13. Monro, H. A. U. 1969. Manual of fumigation for insect control. FAO Agr. Stud. 79. Rome.
- 14. Sinclair, W. B., D. L. Lindgren, and R. Forbes. 1962. The sorption and retention of ethylene dibromide by fumigated citrus and avocado fruits. J. Econ. Entomol. 55:236-240.

J. Amer. Soc. Hort. Sci. 101(1):14-19. 1976.

Inheritance of Eight Characters in Intra- and Interspecific **Crosses Among Five** Carica Species¹

H. U. Mekako² and H. Y. Nakasone³ Department of Horticulture, University of Hawaii, Honolulu, HI 96822

Additional index words, genetics, papaya

Abstract. The inheritance of 8 monogenically controlled plant, fruit, and seed characters in Carica species is reported. The gene for red stem is dominant to that for green stem and the gene for red petiole is dominant to that for green stem and the gene for red petiole is dominant to that for green petiole. Genes for white and purple-blush flower colors are dominant to those for pale yellow; while the gene for red skin color of ripe fruit is dominant to that for yellow. However, the gene for red skin color is not dominant to that for orange skin color; the heterozygote has pink-skinned fruits. The gene for ridging on the fruit (carpel fusion lines) is dominant to that for wide groove, which in turn is dominant to that for narrow groove. Spiny vs. non-spiny seed coat produces an intermediate F₁, indicating no dominance. The gene for succulent fruit pulp is dominant to that for dry pulp. The gene for bushy branching is dominant to that for sparse branching.

Genetic studies of vegetative characters in the Caricaceae have largely been confined to cultivars of Carica papaya L., the only species of commercial importance. These investigations were motivated by attempts to discover sex-linked characters which might allow the identification of sexes in the early seedling stages. Recent studies on compatibility and interspecific hybridization among several Carica species (7, 8) provided an opportunity to determine the genetics of 8 characters.

Usually, color of organs of plants has been reported to be controlled by a single gene pair. Variations in color intensities usually were not investigated, but were attributed to modifying gene action. In a biochemical survey of factors determining flower color, Scott-Moncrief (10) showed that many different gene types were involved in flower color variations, some exhibiting independent action with their effects being purely additive, while others expressed interactions of a complex

Pigmented stem and petiole generally show monogenic inheritance with pigmented stems and petioles dominant over green in Spanish clover (Desmodium sandwicense E. Mey) (9), carrot (Daucus carota L.) (1), and guava (Psidium guajava L.) (6), although exceptions have been reported in jute (Corchorus capsularis L.) (4), okra (Hibiscus esculentus L.) (3), and sesame (Sesamum indicum L.) (2).

In Carica papaya the gene for yellow flower color was dominant to that for white (5). This gene was sex-linked. In the 'Kapoho Solo' purple-tinged flower color was also found to be a sex-linked character limited to hermaphrodites. Female flowers were all white (Nakasone, unpublished data). However, sex vs. flower color linkages offer no practical value inasmuch as sex can also be determined by floral morphology at flowering.

Hofmyer (5) found also that purple stem and petiole in \tilde{C} . papaya were dominant over green stem and petiole. The observed differences in intensity of the purple color were not analyzed but modifying factors affecting intensity were suggested.

Inheritance studies of skin color of ripe fruits have not been reported in *Carica*, largely due to the lack of color variations in C. papaya. There is a mutant yellow cultivar (with yellow leaves and fruits) in which the gene for yellow color of both leaves and skin of immature fruits is recessive to that of normal green

¹Received for publication January 3, 1975. Published with the approval of the Director of the Hawaii Agricultural Experiment Station as Journal Series No. 1835. From a dissertation submitted by the senior author in partial fulfillment of the requirements for the PhD degree at the University of Hawaii.

²Present address: P. B. Division, NIFOR, Benin City, Nigeria, W. A. ³Professor and Horticulturist.

nature.

					No. o	f plants		
Parents]	F ₂	В	C-P ₁	BC-P ₂	
(P ₁)	(P ₂)	F ₁	Red	Green	Red	Green	Red	Green
C. goudotiana (A	A)R Sib-mated							
(Red x Red)		Red	70	0				
C. goudotiana (I	B) sib-mated							
(Red x Red)		Red	55	0				
C. goudotiana (A	A)G sib-mated							
(Green x Gre	een)	Green	0	60				
C. monoica selfe	ed (Green)	Green	0	38				
C. cauliflora (A)	× C. monoica							
(Green x Gre	een)	Green	0	96	0	116	0	76
C. cauliflora (A)	× C. pennata							
(Green x Gre	een)	Green	0	110			0	50

color (Nakasone, unpublished data).

Materials and Methods

We used 7 collections representing 5 species of *Carica* from 4 Central and South American countries:

- 1) C. pennata Heilborn, Svensk. Dioecious, green-stemmed species from Costa Rica.
- C. cauliflora Jacq. Dioecious, green-stemmed species from El Salvador, designated as A to identify collections from 2 different sources.
- 3) *C. cauliflora* Jacq. Dioecious, green-stemmed species from Venezuela, designated as B.
- 4) C. goudotiana (Tr. & Pl.) Solms. Dioecious species A from Colombia with red (R) and green (G) pigmented stem types.
- 5) C. goudotiana (Tr. & Pl.) Solms. Dioecious, green-
- stemmed species from Venezuela, designated as B.
- 6) C. monoica Desf. Monoecious, green-stemmed species from Venezuela.
- 7) C. species No. 203. Unidentified, dioecious, red-stemmed species from Colombia.

All pollinations were made at the mature bud stage before anthesis. When *C. monoica* was used as a seed parent, all staminate flowers were stripped, leaving only the terminal pistillate buds for pollination. All pollinated buds were enclosed in small glassine bags which were tied firmly around the peduncle with the tag string.

Plants were grown in 19-liter containers on nursery benches on the Manoa Campus and in the field at the Waimanalo Experimental Farm. Field-grown plants were spaced 1.52×3.04 m. To minimize effects of the "replant problem" (root rot associated with *Phytophthora palmivora* Butl. and *Pythium aphanidermatum* (Edson) Fitzpatrick), the soil in the fields replanted to *Carica* was pretreated with 40 kg captan/ha. Orchard management for irrigation, fertilization, and weed and pest control followed standard papaya culture methods. Color of flowers, stem, petiole, and fruit, and branching habit were determined visually. Fruit skin color was rated only for ripe fruits. Fruit configurations refer to the grooves and ridges delineating carpel fusion lines (11, 12). Fruit pulp in *Carica* species is either succulent (fleshy) or dry and these types are easily distinguishable.

Results and Discussion

Stem color. Progenies obtained from sib-mating and selfing any one collection were true-breeding (Table 1). Crosses between species with the same stem color also produced progenies with the same parental stem color, indicating identical genes in different species.

Crosses between red- and green-stemmed trees within and between species produced F_1 progenies with red stems (Table 2). F_2 and backcross segregations indicated that the factor for red stem color is dominant to green stem color. Chi-square tests showed close fits of the observed ratios to the theoretical 3:1 and 1:1 ratios for the F_2 and the backcross to the recessive parent, respectively.

Differences in intensity of the red color were observed in the F_1 , F_2 and backcross progenies. Variations ranged from dark to light red, but in determining genetic ratios, all red-pigmented stems were combined as one group. An attempt to determine the mode of inheritance for these color variations did not show any definite pattern, probably due to difficulty in classification.

Petiole color. Crosses between species with red petioles produced plants with red petioles, while crosses between greenpetioled plants produced only plants with green petioles. Crosses between red- and green-petioled species showed all F_1 hybrids with red-colored petioles (Table 3). The F_2 segregation showed a close approximation to the 3:1 ratio with genes for red-colored petiole dominant to those for green-colored petiole. The backcross to the green-colored parent produced an approximate ratio of 1:1.

All red-stemmed plants also produced red petioles but some

Table 2. Inheritance of stem color in progenies of crosses between parents of different colors.

						No. o	f.plants		
Pa	rent	ts			F ₂	В	C-P ₁	BC-P ₂	
$(P_1 = Red)$		$(P_2 = Green)$	F_1	Red	Green	Red	Green	Red	Green
C. goudotiana (A)	×	C. goudotiana (A)	red	202	62	78	0	40	36
C. goudotiana (B)	×	C. monoica	red	78	27		_	-	_
C. species 203	×	C. monoica	red	53	21		_	26	30
C. goudotiana (A)R	×	C. monoica	red	190	75	65	0	50	58
Total				523	185	143	0	116	124
Chi-square for single	e gei	ne difference		0	.48				0.27
P value				0	.49				0.63

Table	3.	Inheritance	of	petiole	color	in	3	crosses	between	red-petioled
an	d gi	reen-petioled	l pa	rents.						

				No. o	f plants	8
Parents			F ₂	BC-P ₂		
$(P_1 = Red)$	$(P_2 = Green)$	F_1	Red	Green	Red	Green
C. goudotiana (B) × C. species 203 × C. goudotiana (R) ×	C. monoica C. monoica C. monoica	Red Red Red	78 91 140	27 32 56	32 27 99	29 33 111
Total Chi-square for single	gene difference		309 1	115 .89	159 (173).68
P value			0	.19	().44

green-stemmed plants produced red-pigmented petioles. This seems to suggest that the modifier genes which control distribution of anthocyanin in the stems are different from those controlling the distribution of red color in the petiole. Erickson and Couto (3) reported a similar case in okra (*Hibiscus esculentus*). They found plants with red stems possessing red petioles and green plants with green petioles but among the greenstemmed plants, some showed red-pigmented petioles. They concluded that there were 2 dominant genes for pigmentation: 1 giving red stems and petioles and the other affecting petioles only.

Our results (Table 3) agreed with those obtained by Hofmyer (5), who reported a single, dominant gene for purple petiole color in *C. papaya*.

Flower color. Carica goudotiana (A) had purple-blush colored flowers (purple stripe on a greenish background); C. monoica had pale yellow flowers; while C. cauliflora (A) and (B), from El Salvador and Venezuela, respectively, and C. pennata produced white flowers. All species bred true for flower color.

The cross, C. cauliflora (A) \times C. monoica (white \times pale yellow), produced F₁ progeny with white flowers (Table 4). The F₂ progeny produced plants with white or yellow flowers in numbers expected on the single gene difference hypothesis (Table 4). The backcross ratios supported the monogenic inheritance hypothesis with genes for white flower color from C. cauliflora dominant to those for pale yellow color from C. monoica. Hofmyer (5) found white and yellow flower colors of C. papaya to be under control of a single pair of genes but, in papaya, the gene for yellow flower color was dominant over that of white. The flower color difference between C. cauliflora and C. monoica is therefore dependent on genes other than those reported in C. papaya.

The F_1 plants of the cross *C. goudotiana* (A)R x *C. monoica* (purple-blush x pale yellow), produced purple-blush flowers (Table 5). The F_2 segregation produced purple-blush and pale yellow flowers in proportions that showed close fit to the theoretical 3:1 ratio. The backcross ratios were as expected of monogenic inheritance with genes for purple-blush color dominant to those for pale yellow flower color.

Ripe fruit skin color. One form of C. goudotiana from Colombia designated as (R) has red stem and petiole and pro-

Table 4. Inheritance of white and pale yellow flower colors in a cross between *C. cauliflora* (white) × *C. monoica* (yellow).

	<u>No. o</u>	f plants	Ra	atio		
Generation	white	yellow	white	yellow	X2	Р
F ₁	63	0	1	0		
F_2	70	25	3	1	0.09	0.77
BC to C. cauliflora	93	0	1	0	0.00	
BC to C. monoica	26	28	1	1	0.47	0.49

Table 5. Inheritance of purple-blush and pale yellow flower colors in a cross between C. goudotiana (A) (purple-blush) \times C. monoica (pale yellow).

	No. of	plants	Ra	atio		
Feneration	purple	yellow	purple	yellow	X2	Р
F1	24	0	1	0		
F_2	56	26	3	1	1.97	0.18
BC to <i>C. goudotiana</i> (A) BC to <i>C. monoica</i>	111 32	0 39	1 1	$\begin{array}{c} 0 \\ 1 \end{array}$	0.00 0.69	0.43

Table 6. Inheritance of red and yellow ripe fruit colors from sibmatings of *C. goudotiana* (A) (d plant was red-stemmed).

	No. of plants		J	Ratio		
♀ parent	red	yellow	red	yellow	X2	Р
Red-fruited Yellow-fruited	31 19	7 25	3 1	1 1	0.88 0.82	0.38 0.39

duces red-skinned fruits. The other, designated as (G), has green stem and petiole and produces yellow-skinned fruits. Since the species is dioecious, the δ plant could be identified by stem color only, and the fruit color was unknown. The δ parent selected for crossing with \Im of both color variants possessed red stem.

A cross between the red-fruited \mathcal{Q} and the red-stemmed \mathcal{J} produced 31 red-fruited and 7 yellow-fruited plants (Table 6). The cross between the yellow-fruited \mathcal{Q} and the same \mathcal{J} parent produced 19 red-fruited and 25 yellow-fruited plants. These ratios approximate 3:1 and 1:1 segregations. Assuming that a dominant gene, R, was responsible for the red fruit color and its recessive allele, r, for the yellow fruit color, the genotypes RRand Rr will both produce red-fruited plants. The genotype of the yellow-fruited plant would be rr and the genotype of the red-fruited \mathcal{Q} parent and the \mathcal{J} parent must have been Rr. It appears reasonable to conclude that the red and yellow fruit colors of *C. goudotiana* are governed by 1 allelic pair with the gene for red color dominant to that of yellow.

Table 7. Inheritance of red, pink and orange ripe-fruit colors in a cross between red-fruited *C. goudotiana* (A) and orange-fruited *C. monoica*.

	N	lo. of p	olants		Rat	io		
Cross (generation)	red	pink	orange	red	pink	orange	X2	Р
Red \times orange (F ₁)	0	21	0	0	1	0		
Pink selfed (F_2)	11	28	13	1	2	1	0.46	0.80
Pink x orange $(BC-P_2)$	0	35	41	0	1	1	0.47	0.79

The cross between C. goudotiana (red-fruited) and C. monoica (orange-fruited) produced F_1 plants with pink fruits (Table 7). An approximate ratio of 1 red:2 pink:1 orange was observed in the F_2 . Backcrossing the F_1 to the orange-fruited parent produced orange- and pink-fruited plants in a ratio of approximately 1 orange:1 pink. Backcross to the red-fruited parent was not made because the original C. goudotiana φ parent was lost before the F_1 plants began to flower. It appears that orange vs. red fruit color is controlled by 1 pair of genes with no dominance.

Fruit configuration. We have observed 3 distinct types of fruit configurations in some *Carica* species. In *C. cauliflora* and *C. pennata* the lines occur as narrow grooves (Fig. 1). In *C. goudotiana* fusion lines occur as narrow ridges (Fig. 2), giving the fruits a markedly pentagonal shape in cross-section. In *C. monoica* and *Carica* sp. 203 the grooves are wide, shallow and barely distinguishable (see *C. monoica* in Fig. 1 and 2).

To test the homozygosity of fruit configurations, crosses were made within ridged-types, within narrow-grooved types, and within wide-grooved types. All crosses produced their respective fruit configurations, indicating that all 3 types bred true.

The F₁ from a cross between narrow groove (*C. cauliflora*) and wide groove (*C. monoica*) produced only wide-grooved fruits like those of *C. monoica* (Table 8, Fig. 1). The F₂ population produced fruits with wide- and narrow-grooved fruits in numbers expected on the single locus hypothesis (Table 8). The segregations observed in the backcross progenies also suggest monogenic control of this character with genes for wide, shallow grooves from *C. monoica* dominant over those for narrow grooves from *C. cauliflora*.

A cross between ridge (\hat{C} . goudotiana) and wide groove (C. monoica) produced F_1 plants with ridged fruits (Table 9, Fig. 2). The F_2 segregation showed a close fit to a 3:1 ratio with genes for ridge dominant to those for wide groove. Results of

the backcrosses also showed monogenic control with genes for ridged configuration from *C. goudotiana* dominant to those for wide grooves from *C. monoica*. The data in Table 8 and 9 show that the gene for wide groove is dominant to that for narrow groove but the gene for the former trait is recessive to that for ridged configuration. Unfortunately, crosses between narrow

Table 8. Inheritance of narrow- and wide-grooved fruits in a cross between *C. cauliflora* (narrow grooves) and *C. monoica* (wide grooves).

	No. c	of plants	Obser	ved ratio		
Generation	wide	narrow	wide	narrow	X2	Р
F ₁	45	0	1	0		
F_2	75	21	3	1	0.50	0.49
BC to C. cauliflora	23	27	1	1	0.32	0.59
BC to C. monoica	39	0	1	0	0.00	

Fig. 1. Narrow-grooved fruits of C. cauliflora; wide, shallow; almost indistinguishable grooves of C. monoica; and the dominant, wide-grooved fruits of the F_1 progeny.

Fig. 3. A and C are non-spiny seeds of C. goudotiana and C cauliflora, respectively; B shows spiny seeds of C. monoica; seeds with intermediate spines of F₁ hybrids, C. goudotiana × C. monoica (A × B) and C. monoica × C. cauliflora (B × C).
Fig. 4. Profuse branching characteristic of C. monoica.

Fig. 2. Narrow-ridged configuration of C. goudotiana fruits; wide, shallow grooves of C. monoica; and the dominant, ridged configuration of the F₁ progeny.

Table 9. Inheritance of ridged and wide-grooved fruits in a cross between *C. goudotiana* (ridged) and *C. monoica* (wide-grooved).

	No. o	f plants	Obser	ved ratio		
Generation	ridged	grooved	ridged	grooved	X ²	Р
F ₁	21	0	1	0		
F_2	37	14	3	1	0.16	0.71
BC to C. goudotiana	52	0	1	0	0.00	
BC to C. monoica	35	38	1	1	0.12	0.74

Table 10. Inheritance of succulent and dry fruit pulp in crosses involving *C. cauliflora, C. goudotiana* (both succulent pulp), and *C. monoica* (dry pulp).

		F	2	BD	$-P_1$	BC-	-P ₂
Cross	F_1	Suc.	Dry	Suc.	Dry	Suc.	Dry
C. cauliflora (P ₁) × C. monoica (P ₂)	all succulent	61	25	52	0	18	20
C. goudotiana $(P_1) \times C.$ monoica (P_2)	all succulent	35	17	40	0	30	38
Total		96	42	92	0	48	58
Chi-square for single gene difference		2.1	.7			0.9	94
P value		0.1	.6			0.3	36

groove and ridge types could not be made due to cross incompatibility.

Pulp texture. All species except *C. monoica* produced fruits with soft, succulent pulp. That species produced fruits with dry, cottony pulp. Pulp texture was determined easily when fruits were fully ripe.

Crosses of C. monoica as 1 parent and 2 species with succulent pulp produced F_1 hybrids with succulent-pulped fruits (Table 10). The F_2 plants of the cross between C. cauliflora and C. monoica produced succulent pulp and dry pulp approximating the 3:1 ratio. Trees of the backcross to C.

observed among the species studied. In *C. monoica* the mature seeds were covered with numerous spines or protuberances (Fig. 3B). These spines, described by Warmke et al. (13) as prominant horn-like projections, are referred to in this study as seed coat spines.

In the other species mature seeds were covered with slightly raised protuberances that gave the appearance of spines having absciced, leaving only scar-like structures. The scar-like structures were described as low, irregular protuberances (13), but the seeds are referred to here as non-spiny.

Crosses between C. goudotiana (non-spiny, Fig. 3A) and C. monoica (spiny) and between C. cauliflora (non-spiny, Fig. 3C) and C. monoica produced F₁ hybrids with spines intermediate in size between those of the parents (Table 11, Fig. 3, A × B and B × C). The F₂ populations segregated plants with spiny, intermediate, and non-spiny seeds in proportions close to the 1:2:1 ratio. The backcross to the spiny parent produced intermediate and spiny seeded plants in the 1:1 ratio. Similar ratio of intermediate and non-spiny plants was obtained from the backcross to the non-spiny parent. The data were pooled for chi-square analysis, which showed a close fit of the observed ratios to the the theoretical values and indicated a simple mode of inheritance without dominance. These results confirm those of Warmke et al. (13) in their cross, C. goudotiana × C. monoica.

Branching habit. Two forms of branching were observed among the species studied. Sparse branching, typical of C. cauliflora, refers to few branches (0-4 branches per plant) produced late during vegetative growth. The main stem remains dominant. Bushy branching, typified by C. monoica, refers to several to many branches per plant produced near the base of the main trunk (Fig. 4). Branching occurs early during vegetative growth and the branches attain the size of the main trunk.

The F₁ hybrids from the cross, *C. cauliflora* \times *C. monoica*, branched profusely from the basal areas like the latter parent. The F₂ population produced plants with bushy and sparse branching closely fitting the 3:1 ratio (Table 12). The progeny of the backcross to *C. cauliflora* produced approximately equal numbers of bushy and sparsely branched trees. The backcross to *C. monoica* produced all bushy-branched plants.

These results suggest a difference of a single pair of genes

Table 11. Inheritance of spiny and non-spiny seed coats in crosses involving *C. monoica* (spiny) and *C. cauliflora* and *C. goudotiana* (both non-spiny).

			No. of plants									
Cross		F2			BC-	-P ₁	BC-P2					
	F ₁	Spiny	Interm	Non- spiny	Interm	Non- spiny	Spiny	Interm				
C. cauliflora (P ₁) ×												
C. monoica (P_2)	interm	19	54	23	22	28	22	17				
C. monoica (P_2)	interm	10	27	14	19	23	37	29				
Total		29	81	37	41	51	59	46				
Chi-square for single ge P value	ene difference	2. 0.	.40 .32		1. 0.	09 59	1. 0.	.61 .46				

cauliflora (succulent) yielded fruits with all succulent pulp. The backcross to C. monoica (dry pulp) produced approximately equal number of plants with succulent pulp and dry pulp. A similar segregation pattern was obtained for the cross, C. goudo-tiana \times C. monoica and the data were pooled for analysis.

The F_2 segregation ratio approximated 3 succulent:1 dry pulp and the backcross to the dry pulp parent produced a segregation approximating the 1:1 ratio. These results indicate monogenic inheritance with genes for succulent pulp dominant to those for dry pulp.

Seed coat spines. Two types of seed coat morphology were

Table 12.	Inheritance	of bra	inching	habit	in a	a cross	between	С.	monoica
(bushy branching) and C. cauliflora (sparse branching).									

	Branch	ing habit	Ratio observed bushy sparse		x2	Р
Cross	bushy	sparse				
C. cauliflora × C. monoica	45	0	1	0		
F ₂	68	27	3	1	.59	.46
BC to C. cauliflora	40	45	1	1	.29	.61
BC to C. monoica	39	0	1	0		

Downloaded from https://prime-pdf-watermark.prime-prod.pubfactory.com/ at 2025-07-05 via Open Access. This is an open access article distributed under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://creativecommons.org licenses/by-nc-nd/4.0/

with bushy branching dominant to sparse branching. It appears reasonable to suggest that *C. cauliflora* possesses strong apical dominance, while *C. monoica* has weak apical dominance.

Literature Cited

- 1. Angell, F. F. and W. H. Gabelman. 1970. Inheritance of purple petiole in carrot, *Daucus carota* var. sativa. HortScience 5:175.
- 2. Culp, T. W. 1960. Inheritance of paper shell capsules, capsule number and plant color in sesame. J. Hered. 51:146-148.
- 3. Erickson, H. T. and F. A. A. Couto. 1963. Inheritance of four plant and floral characters in Okra (*Hibiscus esculentus L.*). Proc. Amer. Soc. Hort. Sci. 83:605-608.
- 4. Gupta, B. D., and M. S. Sarma. 1954. The genetics of Corchorus (jute) VI. Inheritance of a new pigmentation pattern in Corchorus capsularis. J. Genet. 52:374-382.
- 5. Hofmyer, J. D. J. 1938. Genetic studies of *Carica papaya* L. So. Afr. Dept. Agr. and For. Sci. Bul. 187.64 p.
- 6. Ito, P. J. and H. Y. Nakasone. 1968. Compatibility and the inheritance of a seedling character in guava (*Psidium guajava*). Proc.

Trop. Reg., Amer. Soc. Hort. Sci. 12:216-221.

- 7. Mekako, H. U. and H. Y. Nakasone. 1975. Floral development and compatibility studies of some *Carica* species. J. Amer. Soc. Hort. Sci. 100:145-148.
- 8. _____ and _____. Interspecific hybridization among 6 Carica species. J. Amer. Soc. Hort. Sci. (In press)
- 9. Park, S. J. and P. P. Rotar. 1968. Genetic studies in Spanish clover, *Desmodium sandwicensis* E. Mey. I. Inheritance of flower color, stem color, and leaflet markings. *Crop Sci.* 8:467-470.
- 10. Scott-Moncrief, R. 1936. A biochemical survey of some Mendelian factors for flower color. J. Genet. 32:117-170.
- 11. Storey, W. B. 1941. Papaya production in the Hawaiian Islands; Part I: The botany and sex relationship of the papaya. *Hawaii Agr. Expt. Sta. Bul.* 87 p. 5-22.
- 12. _____. 1969. Pistillate papaya flower: A morphological anomaly. *Science* 163:401-405.
- 13. Warmke, H. E., E. Carbanillas, and H. J. Cruzado. 1954. A new interspecific hybrid in the genus *Carica*. Proc. Amer. Soc. Hort. Sci. 64: 284-288.

J. Amer. Soc. Hort. Sci. 101(1):19–23. 1976. Colonization of Almond by Aspergillus flavus¹

Douglas J. Phillips, M. Uota, D. Monticelli, and C. Curtis^{2,3} Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 8143, Fresno, CA 93727

Additional index words. Navel orange worm, aflatoxin, mycotoxin

Abstract. The Aspergillus flavus group was associated with both sound and insect damaged kernels of almond *Prunus dulcis* (Mill.) D.A. Webb during 1972 and 1973. About 1 of 2,000 sound kernels and 1 of 200 insect damaged kernels were colonized. Surface contamination was common on sound and damaged kernels. In orchard plots, spores inoculated on the fruit colonized hulls, shells, and kernels of maturing almonds. Aflatoxins were detected in harvested kernels and hulls. Almond fruits were susceptible to colonization from the time of hull-split, when rapid drying of the fruit began, until after harvest when moisture of the kernel dropped below about 5% based on the fresh weight of the kernel. Infestations by the navel orangeworm, *Paramyelois transitella* (Walker), increased colonization of the kernels by A. flavus from experimental plots.

The drupe of the edible sweet almond has a distinct pericarp enclosing the kernel. This pericarp consists of an outer fleshy hull and inner hard shell. Fruits usually mature on the tree, and a longitudinal suture on one side of the hull splits exposing the shell, allowing rapid drying of the fruit. Cultivars vary in shell thickness and dehiscense (20).

Drying fruits are shaken onto the ground, picked up mechanically, transported to a location where the hulls are removed, and sent tot a plant for shelling, storing, and processing.

Many kinds of micro-organisms are found on almonds (12, 13, 14, 18) and may colonize the hull while the fruit is on the tree (14) or on the ground (12, 13).

Toxigenic species of Aspergillus are widespread on seed and other crops (8, 9, 10). Aspergillus flavus is a "group" species (16) containing 11 species. A. flavus Link, and A. parasiticus Speare both are included in this group and may produce toxic metabolites called aflatoxins. In the Central Valley of California, where most almonds are produced in the U.S., fungi in the A. *flavus* group occurs sporadically on cotton (2). Of 345 objective samples of almonds taken in the period 1970-1974, 8% had detectable aflatoxins at the average level of 20 μ g/kg total aflatoxins and a range of 2-84 μ g/kg (Dr. L. Stoloff, Food and Drug Admin., personal communication). These fungi may colonize almonds while they are drying on the tree or soil (6) and might lead to a pre- or postharvest invasion of kernels by *A. flavus* and contamination by aflatoxins. Preliminary information (Harry W. Schroeder, USDA, College Station, Texas, unpublished report) indicated *A. flavus* occurred on insect-damaged almonds more frequently than on sound nuts. We studied the susceptibility of the almond fruit to *A. flavus* colonization with emphasis on the role of the navel orangeworm (NOW) that commonly damages both kernel and hull.

Materials and Methods

Analysis for Aspergillus flavus. Surface disinfested and nondisinfested almond kernels, shells, or hulls were tested for presence of the A. flavus group. For surface disinfestation, samples were dipped in 70% (v/v) ethanol/H₂O for 10 sec, then immediately soaked in 0.5% sodium hypochlorite solution for 5 min. Without further washing, samples were then aseptically placed on plates of malt-salt medium (MSM) containing 7.5% NaCl, 2% malt extract and 2% agar. Non-disinfested samples were plated directly on MSM plus 13 μ g/ml 2,6-dichloro-4-nitroaniline to inhibit growth of some *Rhizopus* spp. Five almond kernels or 5 half-shells, or 5 half-hulls were placed on each plate. After incubation for 1 week at 30°C, colonies of A. flavus were

¹Received for publication January 14, 1975. Supported in part by the Almond Control Board (Cooperative Agreement No. 12-14-5001-51).

²Research Plant Pathologist, Horticulturist, Plant Physiologist, Research Entomologist, respectively. Agricultural Research Service, P.O. Box 8143, Fresno, CA.

³We acknowledge the advice of L. Stoloff, Food and Drug Administration; the help of Mary Nelson, Agricultural Research Technician; and the cooperation of L. Todd Browne, Fresno County Farm Advisor.