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ABSTRACT. Disease detection through traditional techniques such as scouting
fields on foot, molecular assays, or morphological identification of plant
pathogens is time-consuming and costly. Scouting for disease in the field can be
extremely subjective and largely depends on the scout’s experience and
knowledge of pathogen identification. Unoccupied aerial systems-based remote
sensing on specialty crops has the potential to save labor, enable earlier detection
of plant biotic stress and abiotic stress, and allow easier access to fields during
wet conditions. For simple measurements, such as canopy cover, remote sensing
works well; however, more sophisticated measurements of plant health involve
complex data processing and may be challenging to implement. The difficulty is
compounded for plant–pest pairs that have no published literature about remote
sensing to reference. Technological improvements are steadily advancing, but
these advances have led to short-term obsolescence, which remains an obstacle in
the development of remote-sensing programs. Case studies of the following three
different fungal diseases important in western Oregon crop production are
presented: Alternaria black spot on broccoli, black leg on turnip, and gray mold
on hemp. Remote sensing technologies present an objective approach to sampling
that can address many concerns associated with traditional field sampling. These
techniques can serve as a viable alternative that facilitate the development of
more insightful integrated pest management programs that are essential for
future agricultural efficiency.

Unoccupied aerial systems
(UAS), commonly known as
drones, are increasingly im-

portant crop management tools. Drones
can potentially serve in many different
roles in food crop production systems,
including spraying pesticides, dispersing
beneficial insects, and plant health moni-
toring (Buckland et al. 2020; Merz et al.
2022; Pathak et al. 2020). Currently, in
western Oregon, most drone operations
are conducted by third-party companies
contracted by growers because of equip-
ment cost and the immense input of
time and training to optimize drone
systems. As drone systems and analysis

software continue to evolve, there
are increasing opportunities to adopt this
technology; however, barriers remain.

Among the most technically dif-
ficult jobs accomplished with drones
in agriculture is remote sensing for
plant health monitoring. Remote plant
health monitoring has the potential to
save labor costs compared with tradi-
tional field scouting and offers the po-
tential of early detection of both biotic
and abiotic plant problems. While
large-acreage crops such as corn and
soybean have well-developed models
implemented in user-friendly soft-
ware packages, specialty crops re-
quire significant additional research
to benefit from this technology.

Oregon is rich in specialty crop
production. Top horticultural commod-
ities include nursery crops, vegetables,
and specialty seeds (US Department of
Agriculture–National Agricultural Statis-
tics Service 2023). Specialty crop fields
in Oregon are generally smaller and
more highly diverse than larger horti-
cultural production regions. Because
of the number of different crops grown
as well as the high cost of equipment,

software, and specialized labor, re-
mote plant health scouting programs
on farms are uncommon in Oregon.
Yet, remote sensing programs for
plant health have the potential to of-
fer early intervention opportunities.

The difficulty of using UAS for
disease detection varies greatly with
the visibility of disease symptoms and
signs and the ability of the drone
camera to capture an image with the
needed resolution or orientation. Most
of the literature emphasizes the utiliza-
tion of multispectral or hyperspectral
digital images for disease detection
(Barbedo 2013); however, in the in-
fancy of disease detection by remote
sensing, red-green-blue (RGB) was
the most commonly used method
and still has value because of its low
cost and ease of use. Many studies have
reported success using RGB images for
disease detection (Arivazhagan et al.
2013; Barbedo et al. 2016; Camargo
and Smith 2009a, 2009b; Neumann
et al. 2014). Reviews by Barbedo
(2013, 2016) have provided practi-
cal explanations for why RGB is still
relevant for disease detection. Despite
the ability of RGB to detect plant dis-
eases, studies that have compared RGB
and multispectral images have often re-
ported that multispectral cameras are
more proficient for disease detection
(Abdulridha et al. 2019; Dammer et al.
2011). Many of these findings are likely
attributable to the reflectance of vege-
tation in the near-infrared region of
the electromagnetic spectrum often
captured in multispectral data, but
not in RGB data.

Spectral indices and vegetation in-
dices have become primary approaches
for disease detection by multispectral
users (Behmann et al. 2014; Candiago
et al. 2015; Naidu et al. 2009; Yang
et al. 2007). A vegetation index is a
spectral calculation between bands
meant to reveal characteristics of the
plant that are not apparent other-
wise. Many vegetation indices have
been developed over the past few
decades, including spectral indices
designed for a single disease (Mah-
lein et al. 2013). Currently, specific
indices are not yet as effective as a
well-trained field scout for disease
detection. Instead, the indices detect
the result of disease, such as poor
canopy cover or chlorotic leaf tissue.

Machine learning, a field of artifi-
cial intelligence, focuses on computer
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algorithms that can learn from data
and improve their accuracy over time
through experience. When applied to
plant disease detection using remote
sensing, the process involves five steps:
data acquisition, data processing, model
training, model testing, and application.
This work used a support vector ma-
chine that comprised supervised max-
margin models with associated learning
algorithms that analyzed data for classi-
fication and regression analysis. Support
vector machines have been well-studied
and frequently used in agriculture
disease detection models (Rumpf et al.
2010).

In addition to the variability of
equipment capabilities, disease expres-
sion in different crop species and culti-
vars can vary widely. Because of the
differences in crop plant color and re-
flectance, a model that detects pow-
dery mildew on one plant species may
not perform well on another crop,
even if symptoms of disease appear
similar to human scouts. Collecting
both UAS imagery and proximal data
to “ground-truth” when beginning
to use a UAS for plant health is im-
portant to understanding what the
images and vegetation indices are ac-
tually conveying. Remote sensing of
the UAS is not currently a substitute
for an on-the-ground scouting pro-
gram. This series of cases studies re-
ported here aimed to evaluate the
potential for disease detection efforts
via UAS for specialty crop fields in
western Oregon. In each study pre-
sented, our hypothesis was that disease
detection would be similar with the
use of drone-acquired images and vi-
sual ratings. Details of data collection
and data processing are provided in the
Supplemental Material. Please review
these details before reading each case
study.

Case studies: Three disease
detection trials of specialty
crops
Broccoli–Alternaria black spot

The first project we conducted
with UAS involved collecting multi-
spectral imagery of a field trial at the
North Willamette Research and Exten-
sion Center (see Supplemental Fig. 1
for map) and evaluating the effets of
two fungicide treatments, chlorothalo-
nil and fluazinam, with a nontreated
control on an Alternaria foliar disease
(black spot) in broccoli as part of a

product efficacy trial. Broccoli (Brassica
oleracea) is afflicted by Alternaria dis-
eases (Black Spot, Gray Leaf Spot, Pod
Spot). Alternaria brassicae and Alter-
naria brassicicola can infect leaves, pe-
tioles, stems, flower parts, and seed
pods of a wide range of Brassicaceae
crops and weeds. These fungi survive
on residues of infected crucifer crops
and weeds, producing asexual spores
(conidia) when conditions are condu-
cive and the debris is on the soil surface.
Older leaves and older plants are more
susceptible to Alternaria black spot.
Small, dark or yellow leaf spots first de-
velop and enlarge to circular areas that
are brown to gray in color with or with-
out concentric rings and possibly with
black or purple borders and/or sur-
rounded by yellow halos. Sometimes
the leaf spots are limited by leaf veins,
so the spots are angular in appearance
rather than circular. Visual rating meth-
ods are detailed in S2 of the Supple-
mental Material.

A Micasense RedEdge–M (AgEa-
gle Aerial Systems Inc., Seattle, WA,
USA) optical sensor containing five
multispectral bands was fixed to the
DJI Matrice 210 RTK (SZ DJI Tech-
nology Co. Ltd., Shenzhen, China)
UAS platform. Camera and platform
specifications are detailed in S3 of the
Supplemental Material. The UAV was
flown at 10 m and 20 m above ground
level on a plot measuring 4046 m2 be-
tween 11:00 AM and 1:00 PM. Flights
contained 80% image overlap and a
double grid flight pattern using the
DJI Pilot software (SZ DJI Technol-
ogy Co. Ltd., Shenzhen, China). A re-
flectance panel was imaged before and
after flights for radiometric calibra-
tion. Then, with the true reflectance
values of the panel for each wave-
length captured by the camera given
by Micasense, radiometric calibration
was completed in Pix4Dmapper to
convert the digital numbers captured
by the image to true image reflectance
(Pix4Dmapper Pro version 4.2.27). Im-
ages were stitched together in Pix4D
mapper and exported to ArcGIS, where
plots were identified as separate areas of
interest and subjected to analysis.

We detected significant differ-
ences among treatments across three
indices: normalized difference vege-
tation index (NDVI) (Brecht 2018;
Pettorelli 2013); normalized difference
red edge (NDRE) (Fitzgerald et al.
2010) and near-infrared reflectance

(NIR); and optimized soil adjusted
vegetation index (OSAVI) (Brecht
2018) (Fig. 1). The chlorothalonil-
treated plants consistently showed
the highest reflectance. The index
maps present the reflectance values
for each respective index in a color
ramp display (Fig. 2). All index maps
with NDRE, NIR, and OSAVI showed
similar results of vegetation health
within the treatment regions. Treat-
ment 2 had higher values for the indices
shown in red, which is an indication of
canopy coverage. The canopy coverage
for treatment 2 is the largest, and
treatment 3 shows the lowest canopy
coverage.

However, on-the-ground visual
ratings (Ocamb et al. 2019) showed
that the story was more complicated
than fungicide efficacy measurement.
While plants in fluazinam-treated plots
had a significantly lower disease inci-
dence than that of chlorothalonil-treated
plants, it also caused phytotoxicity in the
broccoli that was observed as a faint fo-
liar chlorosis. The UAS reflectance data
indicated changes in canopy coloration
as a result of phytotoxic effects, but not
the presence of dark-colored leaf spots.
Alternaria black spot was relatively less
visible in remote overhead images
than phytotoxicity; therefore, phyto-
toxicity and possibly reduced canopy
cover resulted in the difference in
the UAS imagery analysis. This sim-
ple case study shows the importance
of collecting traditional proximally
sensed disease ratings for crops, at
least initially, to ensure that the meas-
urements taken using UAS actually
convey the disease incidence/severity
rather than other biotic or abiotic
stressors.

Turnip–Black leg
A machine learning model was

developed to detect black leg in turnip
seed fields (Bates 2021). Black leg is a
fungal disease incited by Plenodomus
lingam (syn. Leptosphaeria maculans,
anamorph: Phoma lingam) and Pleno-
domus biglobosus (syn. Leptosphaeria
biglobosa) that is problematic for cru-
cifer vegetable crop producers and
seed growers, including winter ca-
nola producers, where overwintering
of crops is required for vernalization and
subsequent seed production (Fig. 3).
Outbreaks of black leg in conventional
specialty seed production in western
Oregon had been absent since the
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1970s; however, widespread disease
was detected in 2014 (Claassen et al.
2021).

The environmental conditions are
unique in western Oregon, making
this area among the few regions in
the world where climatic conditions al-
low for the production of quality Bras-
sicaceae seed. However, the cool, wet
conditions during late fall through
early spring months in western Oregon
create an ideal environment for black
leg outbreaks, which can reduce yield
of Brassicaceae plants through plant
stunting and death as well as affecting
seed quality. Seed harvests fail the re-
quired seed certification testing pro-
cess if the black leg fungus is detected
in seed testing, which renders the
seed lot worthless. The wet conditions
cause monitoring of black leg to be
problematic, while spring scouting is
also hampered by inflorescences taking
over the space between plant rows.

TURNIP SITES. Turnip leaves af-
fected by black leg were collected on
7 and 15 Mar 2019 from seed fields at
two commercial farms in the Willam-
ette Valley in western Oregon. Un-
manned aerial vehicle (UAV) flights
were also conducted at these fields on
the same dates and selected based on

cloud-free days during the winter
months when leaf spot could be ob-
served. Symptomatic leaves were col-
lected to supply sufficient plant material
representative of healthy tissue and dis-
eased portions. Plenodomus leaf spots
in selected turnip seed fields were not
identified to species with molecular
testing, but they were documented
with images and determined to be Ple-
nodomus-induced leaf spots based on
characteristic symptoms and signs, in-
cluding the production of pycnidia
and purplish to pinkish cirrhus (co-
nidia) that are characteristic of Plenodo-
mus lingam and Plenodomus biglobosus
from a subset of pycnidia. Following
UAV flights and the collection of
more than 100 diseased leaves from
each location, leaves were placed in a
moist chamber and returned to the
laboratory. Diseased leaf specimens
were either placed in a cold room
(�5 �C) for preservation for a maxi-
mum of 48 h or immediately used
for image collection. Visual disease
rating methods are detailed in S2 of
the Supplemental Material.

TURNIP DATA ACQUISITION. An
optical sensor capturing five multispec-
tral bands (Micasense RedEdge–M;
AgEagle Aerial Systems Inc.) was

fixed to the DJI Matrice 210 RTK
(SZ DJI Technology Co. Ltd., Shenz-
hen, China) UAV platform. The UAV
was flown at 10 m and 20 m above
ground level on a 4046-m2 plot be-
tween 11:00 AM and 1:00 PM. Flights
contained 80% image overlap and a
double grid flight pattern using the
DJI Pilot software (SZ DJI Technol-
ogy Co. Ltd., Shenzhen, China). A
reflectance panel was imaged be-
fore and after flights for radiomet-
ric calibration.

The optical sensor was alsomounted
to a PVC structure approximately 1.5 m
above ground level with a power cable
running to a laptop serving as the power
source. The optical sensor was directed
downward where the sensor view area in-
cluded a black tarp and plastic tray as the
background with a single turnip leaf
placed at the center. Beside the tray
was a reflectance panel used for ra-
diometric calibration. Turnip leaves
with leaf spots characteristic of black
leg were imaged outdoors under the
PVC structure between 11:00 AM
and 1:00 PM to ensure properly lit
photos. Images of 60 to 100 turnip
leaves were collected for each of the
two field locations on both dates with
a spatial resolution of approximately
0.1 cm and 12-bit radiometric resolu-
tion. Details of data processing are
provided in S4 of the Supplemental
Material.

CLASSIFICATION AND ASSESSMENT

OF BLACK LEG ON TURNIP. A clear di-
vision was observed between the
“Plenodomus-affected” (diseased) and
“healthy plant tissue” (nondiseased)
pixels (Fig. 4). A total of 34 support
vectors were used to determine a hy-
perplane for the binary classification
of pixels when applying the support
vector machine (SVM) model with a
Gamma5 0.1 and cost5 1.

Of the 676 total pixels tested in
the model, 96.8% were accurately
classified as either diseased or nondi-
seased, while 3.2% were misidentified as
either false-positives or false-negatives
(0.04 and 0.03, respectively). The
model had specificity of 0.96 and
sensitivity of 0.97.

The final assessment of the SVM
binary classifier was confirmed with
classification of four individual leaves
containing 15,519 pixels (Fig. 5).
Classification of pixels in the four
leaves resulted in an average accu-
racy of 97.0% and Kappa coefficient

Fig. 1. Mean reflectance values (n 5 4) for treatments with standard deviation
are reported for normalized difference vegetation index (NDVI) (A), near-
infrared (NIR) (B), normalized difference red edge (NDRE) (C), and optimized
soil adjusted vegetation index (OSAVI) (D). Means not sharing a letter are
significantly different using the Tukey-Kramer adjustment for multiple means
comparisons at a level of significance of P 5 0.05. Treatment 1 5 nontreated
control; treatment 2 5 chlorothalonil applied weekly; treatment 3 5 fluazinam
applied weekly.
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of 0.60. The specificity was 0.99 and
sensitivity was 0.48.

Hemp–Gray mold (botrytis bud
blight and stem canker)

Botrytis spp. can thrive under a
range of environmental conditions,
but environmental conditions along
with several biological and agricultural
factors will influence the development
of disease. The two most important

environmental factors for the germina-
tion of a Botrytis conidium are relative
humidity and ambient temperature.
While this pathogen is known for its ex-
tremely high genotypic and phenotypic
plasticity, which give it the ability to
adapt to many environments and allow
Botrytis spp. to persist within a broader
spectrum of temperatures and humidity
ranges, the optimal conditions are tem-
peratures between 15 and 20 �C with

the presence of free water or relative hu-
midity above 93% (Carisse 2016).
Generally, the minimum period of
time during which the temperature
and relative humidity requirements
should be met is 4 h, but the longer
the conducive environmental condi-
tions persist, the greater the likelihood
of an infection event, regardless of
crop (Broome et al. 1995; Bulger et al.
1987). Cool to moderate temperatures
and high relative humidity are com-
mon conditions in the Willamette Val-
ley of Oregon, particularly in the late
summer and early fall; these are high-
risk factors for disease development
caused by Botrytis in hemp plants.
Botrytis is known to remain latent
within the plant until the required envi-
ronmental conditions are met in the in-
fected host tissues. Once environmental
conditions are favorable, it is only a mat-
ter of days before symptoms become
visible; soon thereafter, disease can reach
epidemic proportions if effective dis-
ease management strategies are not
instituted (McPartland 1996).

Hemp floral organs serve as the
primary infection court for Botrytis
spp., but this fungus can also infect
wounded tissues as well as senescing
portions of a plant, and oftentimes it
will remain quiescent before symptoms
develop. While the primary mode for
Botrytis infection of hemp is not well-
studied, penetration is known to occur
on other crop hosts through natural
openings such as carpels (De Kock and
Holz 1992) and stomata (Fourie and
Holz 1995; Hsieh et al. 2001), al-
though Botrytis may infect through
an undamaged cuticle in some cases
(Nelson 1951). Symptoms on hemp
flowers begin with fan leaflets turn-
ing yellow and wilting, followed by
browning of the pistils. Soon after,
flowers become covered in gray myce-
lium, conidiophores, and conidia,
resulting in a gray to brown and
fuzzy appearance that gives rise to
the disease called gray mold (McPart-
land 1996). Soon after, disease can
spread encompassing large portions to
entire inflorescence (Fig. 6). Although
gray mold on hemp flowers is a pri-
mary focus of this research project,
Botrytis spp. can cause damping-off of
seedlings or incite stem cankers when
plants are nearing full maturity, espe-
cially on cultivars grown for fiber pro-
duction (McPartland 1996; McPartland
et al. 2000).

Fig. 2. Optimized soil adjusted vegetation index (OSAVI) images were collected
at an experimental broccoli planting using the Micasense RedEdge-M Sensor.

Fig. 3. Leaf spot on turnip leaf showing pycnidia formation and shothole effect in
the center of leaf lesions typical of Phoma leaf spot caused by Plenodomus
maculans and/or P. biglobosa in western Oregon (A). Turnip leaf displaying
symptoms of leaf spots characteristic of black leg (B) (Image A provided by
C. M. Ocamb).
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HEMP SITE. On 18 Jun 2020,
0.28 ha (2833 m2) of the hemp culti-
var ‘White CBG’ were planted at the
Oregon State University Botany Field
Laboratory in Corvallis, OR, USA, for
a biofungicide efficacy trial of gray
mold on hemp. Pregerminated seeds
were hand-sown in a randomized com-
plete block design with five replicates.

Each plot had two rows of 10 plants,
with plants spaced at 1.8 m between
rows and 1.2 m within rows. There
were two plants between replicate
blocks and three plants between plots
within a replicate block providing a
3.66-m buffer. Additional details of
this study can be found in Bates
(2021). Visual disease rating meth-
ods are detailed in S2 of the Supple-
mental Material.

HEMP DATA ACQUISITION. Visual
survey of the field. From June to
October, plants were surveyed for gray
mold; Botrytis was first observed caus-
ing disease within the hemp field on
22 Sep 2020. Podosphaera macularis
and Fusarium spp. were also noted on
some plants. Visual assessments of gray
mold incidence in the uppermost 30-cm
portion of eight individual inflorescence
on each of five randomly chosen plants
in each plot were conducted on 25 Sep,
2 Oct, and 9 Oct 2020. Incidence data
were analyzed as repeated measures in a
generalized linear mixed model assum-
ing a binomial distribution of the re-
sponse variable. Treatment, rating date,
and their interaction were fixed effects.
Replicate block was a random effect.
Temporal correlation of residuals was
modeled assuming a first-order autore-
gressive covariance structure. Analyses

were conducted using the GLIMMIX
procedure in SAS version 9.4 (SAS Insti-
tute, Cary, NC, USA).

Aerial survey of the field. The UAV
flights were conducted on 26 Aug,
22 Sep, and 7 Oct 2020, between
11:00 AM and 1:00 PM for each
flight. The UAV was flown at 10 m
above ground level and ranged from
21 to 24 min, with 80% image over-
lap and a double grid flight pattern
covering 3642 m2 using DJI Pilot
software. A reflectance panel was im-
aged before and after flights for radio-
metric calibration. The aircraft platform
was the DJI Matrice 210 RTK (Supple-
mental Table 1) with a Micasense
RedEdge–M(Supplemental Table 2) op-
tical sensor containing five multispectral
bands. Spatial resolution was 0.69 cm,
with a 12-bit radiometric resolution. De-
tails of data processing are provided in
S4 of the Supplemental Material.

CLASSIFICATION AND ASSESSMENT

OF GRAY MOLD ON HEMP. A generally
high rate of “unhealthy leaf” pixel
misidentification by all models tested
led to the development of a novel veg-
etation index, Green Red Modified
Vegetation Index (GRMVI). Initially,
differences in the four training classes
for each spectral band and vegetation

Fig. 4. A plot of pixels used in the training data set to determine the hyperplane of the support vector machine (SVM) model
with a hyperplane drawn through the training data using 34 data points as support vectors. When testing data are used,
points below the line are classified as diseased, while pixels above are classified as nondiseased.

Fig. 5. Four turnip leaves removed
from the background with pixels
classified as either nondiseased (green)
or diseased (white). The black pixels
indicate pixels that were manually
selected as diseased and true positives
that were misclassified by the support
vector machine (SVM) model.
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index were assessed for relatedness in
pixel ranges and overlap with an em-
phasis on the minimum and maxi-
mum values. Means of classes were
less significant than large overlaps in
range regarding SVM and RF classifi-
cation models. Box and whisker plots
of the GRMVI with outliers included
(Fig. 7) or removed (Fig. 8) are pro-
vided and were used for the hemp–
gray mold model development. With
the outliers included, the maximum
value for “Botrytis-infected inflorescence”
(unhealthy bud) was 0.91 and the

minimum for “unhealthy leaves” was
0.38, resulting in a difference of 0.53
in digital number values. With out-
liers removed, the maximum value
for “Botrytis-infected inflorescence”
(unhealthy bud) was 0.64 and the
minimum value for “unhealthy leav-
es” was 0.54, resulting in a difference
of 0.10 in digital number values. By
merging “healthy inflorescence,”
“unhealthy leaf,” and “healthy leaf,”
no differences in minimums and maxi-
mums are seen because “unhealthy
leaves” represent the lowest values in

the merging of these three classes.
Because SVM models use support
vectors to generate a hyperplane, un-
derstanding the range of data is more
useful than comparing means. Box
and whisker plots provide a clear vi-
sual depiction of the data spread along
with the outliers, which tend to define
the model’s hyperplane, particularly
for an SVM. In many pixel-based
analyses using machine learning, out-
liers are not removed from the train-
ing classes; however, this approach of
removing outliers has seen acceptance
in other fields because of increased
model accuracy (Maniruzzaman et al.
2018). Outliers were removed from
this model for two reasons. First,
when generating a training data set,
a limited number of misclassified pix-
els is not unexpected. If the data set is
extremely large, then these misclassi-
fied pixels have less of an impact on
the generated hyperplane. Second,
machine learning model building
should use a cyclic process of model
creation, repeated testing, and fine-
tuning of the model until the best
results are found. Through this repe-
tition of model creation and testing,
the removal of outliers provided a
hemp–gray mold model with the best
results with the data used as indicated
in the confusion matrix. Pixels desig-
nated as outliers in the hemp model
were primarily pixels displaying very
low levels or early stages of disease, or
they were chlorotic or necrotic leaves
that visually appeared as gray mold-
affected inflorescence through the
values of the GRMVI data.

The set of bands and vegetation
indices were additionally tested for
differences by an analysis of variance
(ANOVA) when examining data with
four classes; then, they were further
assessed with a pairwise t test of means
adjusted by Bonferroni. This analysis
helped to remove vegetation indices
or bands where there were no signifi-
cant differences in observed means
and would not have contributed sig-
nificantly to the model’s ability to
classify training groups. With two clas-
ses, an ANOVA was conducted using
GRMVI, and a significant difference
was seen between classes (P < 0.01).
Mean Decrease Gini was used as a final
assessment to determine variable im-
portance and what should be used for
the hemp–gray mold model. Bands or

Fig. 6. Hemp inflorescence with a single flower infected with Botrytis, the causal
agent of gray mold (A). Gray mold along an inflorescence after disease spread
among flowers resulting in flower necrosis (B).

Fig. 7. The box and whisker plot of gray mold on hemp training data of Green
Red Modified Vegetation Index (GRMVI) pixels with outliers included in the
four training classes.
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vegetation indices with greater Mean
Decrease Gini values are associated
with contributing to a better model
fit. Table 1 lists the significance
given to each variable for both clas-
ses, “Botrytis-infected inflorescence”
and “other plant tissue,” in addition
to the four classes of “Botrytis-
infected inflorescence,” “healthy flow-
ers,” “unhealthy leaves,” and “healthy
leaves.” The GRMVI was the most im-
portant model for the two classes and

was, subsequently, the sole variable se-
lected for the final gray mold–hemp
model.

The final gray mold–hemp model
used an SVM of Gamma 5 1 and
cost5 1 with the new vegetation index,
GRMVI, which was determined to pro-
vide the greatest balance of accuracy
with the fewest variables included.
The SVM model used 91 support
vectors (2340 classified testing pix-
els) and resulted in an accuracy of

99.15% and Kappa value of 0.97,
with sensitivity of 0.97 and specificity
of 0.99.

Field validation of the SVM
model indicated misclassification of
“unhealthy leaves” as “Botrytis-
infected inflorescence.” Extraction
of the hemp plants from the back-
ground noise, such as brown soil and
weedy vegetation, was one of the
greater challenges of this portion of
the remote sensing work with hemp,
but it can be accomplished through
various means (Hamuda et al. 2016).
Because of many false-positive results
of “unhealthy leaves,” another step
was added to the analysis to reduce
pixels falsely identified as “Botrytis-
infected inflorescence” to “other plant
tissue.” To conduct extraction of the
hemp plants from the field site used in
our study, conservative methods of re-
moving the outer edge of most plants
were applied to ensure that little to
none of the soil appeared in the analysis
because soil generally causes a false-pos-
itive result. This post-SVM step used
Triangular Greenness Index (TGI) to
help optimize the accurate designation
of pixel classification, creating an itera-
tive process. The differences between
classes of pixels in the TGI, with and
without outliers, are shown in Figs. 9
and 10, respectively. With the out-
liers included, the maximum value
for “Botrytis-infected inflorescence”
was �680 and the minimum for
“unhealthy leaves” was �13,855, re-
sulting in a difference of more than
13,000 in digital number values. With
outliers removed, the maximum value
for “Botrytis-infected inflorescence”
was �680 and the minimum value for
“unhealthy leaves” was �3065, re-
sulting in a difference of 2385 in
digital number values. A threshold of
�3000 effectively corrected for false-
positive results of “unhealthy leaves”
and was included in the analysis, which
changed “Botrytis-infected inflorescence”
with a digital number greater than
�3000 to “other plant tissue.” An
example of the intersection between can-
opy height model, segmented NDVI,
and 8-pixel buffer is illustrated in
Fig. 11. Each SVM-classified plot
with the TGI threshold as well as in-
dividual plants are shown in Fig. 12.

The sampling of hemp inflores-
cence pixels from the classified model
derived from the SVM model and

Fig. 8. The box and whisker plot of gray mold on hemp training data of Green
Red Modified Vegetation Index (GRMVI) pixels with outliers removed from the
four training classes.

Table 1. Mean Decrease Gini values associated with each band or vegetation in-
dex when assessing variables with two training classes and four training classes.

Band or vegetation
index

Mean decrease
Gini (two classes)

Mean decrease
Gini (four classes)

SAVI 76 478
OSAVI 85 490
RECI 6 31
GCI 32 237
MSRE 7 37
MSR 87 507
GNDVI 25 271
NDRE 7 40
NDVI 86 438
GRVI 336 260
TGI 257 384
GRMVIi 430 315
Red edge 30 47
Red 7 167
Near-infrared 37 50
Green 48 178
Blue 8 35
iGreen Red Modified Vegetation Index (GRMVI) was the selected variable for the gray mold-hemp support
vector machine model.
GCI 5 Green Chlorophyll Index; GNDVI 5 Green Normalized Difference Vegetation Index; MSR 5 Modi-
fied Simple Ratio; MSRE 5 Modified Simple Ratio Red-Edge; NDRE 5 Normalized Difference Red Edge;
NDVI 5 Normalized Difference Vegetation Index; OSAVI 5 Optimized Soil Adjusted Vegetation Index;
RECI 5 Red-Edge Chlorophyll Index; SAVI 5 Soil Adjusted Vegetation Index; TGI 5 Triangular Greenness
Index.
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TGI threshold had 95.8% accuracy,
with a Kappa of 0.80. The specificity
was 0.99 and the sensitivity was 0.70.

The ANOVA indicated signifi-
cant treatment effects assessed using
field-based disease incidence (the con-
ventional on-foot disease assessments)
(P # 0.0001), classified model rating
disease incidence (P5 0.0885), and ref-
erence false color images disease rating
incidence (P 5 0.0289). Inflorescence
in the nontreated control had the
greatest estimated percentage of gray
mold using each assessment method
(Table 2). However, the mean per-
centage of the gray mold incidence
for all treatments was much larger
with field-based ratings than that with
either the classified model or the refer-
ence false color images disease rating
method. The mean incidence percent-
age of gray mold rankings of the clas-
sified model and that of the reference
false color images disease assessments

were the same. Significant differences
between nontreated control and the
three fungicide treatments were ob-
served in both field-based incidence
and reference false color images inci-
dence (P # 0.05). The rank order of
mean incidence of the field-based
rating method and that of the classified
model method differed between plants
in plots that received treatments 1 and
2, but the means were not significantly
different with either treatment.

Field-based incidence ratings, clas-
sified model incidence ratings, and refer-
ence false color images incidence ratings
were plotted for each treatment at each
block. Incidence ratings from the classi-
fied model ratings had a low R2 of 0.26
when regressed against disease incidence
using field-based assessments (Fig. 13).
Incidence ratings from the reference
false color images and field-based
disease assessments also had a low R2

value of 0.32. Disease assessment rat-
ings from the classified model ratings
had the highest R2 correlation with
reference false color images disease
ratings of 0.85.

Discussion
Alternaria on broccoli

The results of this research illus-
trate the complexity of developing
models for disease detection using
remote sensing under various field
conditions. While the broccoli field
trial identified a difference in plant
growth between treatments, visual rat-
ings were needed to identify abiotic
stress from pesticide applications, as
opposed to disease damage. However,
both black leg on turnip and gray
mold on hemp were successfully iden-
tified through remote sensing with a
multispectral sensor and machine learn-
ing techniques after more advanced
data processing approaches and, in
the case of black leg, increased resolu-
tion achieved with a stationary frame
inside the greenhouse.

Black leg on turnip
The black leg–turnip model did

not use outlier removal; instead, it ad-
hered to a more conventional machine
learning model development method
set. In the turnip training data set, over-
lap occurred, with “nondiseased” pixels
merging into the “diseased” cluster of
pixels. This same problem arose in the
training data set for “Botrytis-in-
fected inflorescence” and “other plant

Fig. 9. The box and whisker plot of gray mold on hemp training data of Triangular
Greenness Index (TGI) pixels with outliers included in the four training classes.

Fig. 10. The box and whisker plot of gray mold on hemp training data of Triangular
Greenness Index (TGI) pixels with outliers removed from the four training classes.

Fig. 11. Hemp plant with a blue
polygon indicating the region being
extracted through the overlap of the
ArcGIS Pro segmentation function,
canopy height model, and 8-pixel buffer.
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tissue.” This could be a result of gen-
uine overlapping of reflective values of
the diseased and nondiseased classes,
an imperfect training data set, outliers,
or an insufficient number of training
values used in the model.

The results of the SVMmodels de-
veloped for black leg on turnip and gray
mold on hemp appear to be sufficient
for ex situ applications based on the
model validation findings using the test
data. However, with the described flight
and camera parameters for the equipment
in this study, the black leg turnip model
was not successful in field conditions.
With the use of a more capable multi-
spectral camera, the model should be re-

evaluated for use at a field scale because
image resolutions at the scale of the
greenhouse study are now available at
greater distances that could result in less
leaf disturbance fromUAS downdraft.

Gray mold on hemp
The development of a novel veg-

etation index, GRMVI, was necessary
and revealed differences in reflectance
values for hemp pixel classes not seen
in the other bands or vegetation indi-
ces. However, this study indicated
that high-accuracy pixel classification
with few false-negative and false-positive
results does not directly translate to
dependable disease identification in

field-based applications. Although the
estimated disease incidence was much
lower in the classified model com-
pared with the field-based ratings,
ranking of treatment means by both
methods were similar. Although rank-
ings were similar at the experimental
level, a low correlation between dis-
ease incidence ratings were found for
each treatment plot when comparing
the two methods. Accuracy in this
context is always in reference to a metric
used to evaluate algorithms on binary
and multiclass classification datasets. Ac-
curacy is the percentage of instances
that are correctly classified. High accu-
racy is a positive indicator of the
model’s ability to correctly deter-
mine diseased and nondiseased plant
tissue via pixel classification.

The need to apply a buffer area to
facilitate the extraction of hemp plant
tissue from soil background pixels was
problematic and demonstrated the need

Fig. 12. A normalized difference vegetation index (NDVI) false color image of a
hemp field at the Oregon State University Botany and Plant Pathology Field
Laboratory with extracted plant polygons in white for each treatment plot (A).
An individual plant with white pixels identifying healthy plant tissue and black
identifying Botrytis-infected inflorescence (B). The hemp plant from (B) without
identified pixels as an NDVI false color image with red pixels indicating disease
within the plant (C).

Table 2. Gray mold incidence on hemp inflorescence for the field-based, classified
model, and reference false color images-based disease assessment methods.

Gray mold incidence (%)

Treatment Field-basedi
SVM classified

modelii
Reference false
color imagesii

Nontreated control 83.1 aiii 17.6 a 23.6 a
Treatment 1 59.1 b 6.6 ab 9.9 b
Treatment 2 58.0 b 7.5 ab 11.7 b
Treatment 3 55.5 b 5.4 b 9.5 b
i Field-based data rating (conventional on-foot assessment) was conducted on 9 Oct 2020.
ii Remote sensed data were collected on 7 Oct 2020 for both classified model and reference false color images
disease assessment methods.
iiiMeans within the same column followed by the same letter are not significantly different based on a general-
ized linear mixed effects model and pairwise t test at P # 0.05.

Fig. 13. Gray mold incidence for four
treatments with five replicates by two
disease assessment methods and a
third disease assessment using by-hand
classification of false color images. The
conventional field-based and classified
model with a support vector machine
(SVM) and Triangular Greenness
Index (TGI) threshold regression
(R2 5 0.26) (A). The field-based and
reference false color images disease
incidence regression (R2 5 0.32) (B).
The classified model and reference
false color images disease incidence
regression (R2 5 0.85) (C).
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for careful development of processes
for remote disease detection specific
to crop/pathogen combinations. Al-
though not all pixels composing the
plant were included in the final anal-
ysis, large enough regions of most
plants were extracted for a represen-
tative sampling of the field. Unless
the outer edges of the plants display
more disease than the inner portion,
which did not appear to be the case
in this study, this conservative ap-
proach to plant canopy extraction
seems acceptable as a work-around
for the problems posed by exposed
soil and other vegetation surround-
ing individual plants. However, the
noise caused by soil and vegetation
in this field that led to misclassification
of pixels may be less of an issue in com-
mercial hemp fields that use black plastic
within the plant row, but plastic–culture
adds complexity in field management,
cost, and pest pressure. Because only the
turnip leaves were manually extracted,
rather than entire plants, false-negative
and false-positive results were much less
common, as would be expected. If
whole turnip plants were extracted,
then similar issues as posed by the
hemp field would likely arise, making
the classification process more difficult.
Nonetheless, for any agricultural field-
based application, extraction of the
plants from the background is perti-
nent to obtaining accurate and mean-
ingful analysis results.

To apply this technology under
field conditions, a much lower level of
false-negative results is necessary to
make this remote sensing tool reliable.
Through visual assessment of the clas-
sified pixels in the raster, it was clear
that some of the false-positive results
that appeared on the hemp image
were attributable to necrotic and/or
chlorotic foliage rather than Botrytis-
infected inflorescence. This tends to
be a reoccurring issue and is one of
the greatest challenges of this work. It
is an anticipated problem when using
field data rather than greenhouse or
laboratory-grown plants free of other
abiotic and biotic factors that influ-
ence or mimic plant health and the
appearance of yellowing or browning
plant tissues.

The TGI showed the least amount
of overlap between the classes “unhealthy
leaves” and “Botrytis-infected in-
florescence” among bands and vegeta-
tion indices examined. The maximum

and minimums of both these classes,
analyzed with and without outliers,
were used to determine the threshold
of �3000 to transfer pixels assigned to
the “Botrytis-infected inflorescence”
class to the “other plant tissue” class.
This threshold resulted in fewer false-
positive results. Although the inclu-
sion of the threshold did slightly in-
crease the occurrence of false-negative
results, the impact of including the
threshold was important enough for it
to be part of the final model used for
field testing.

When determining how the SVM
model classified pixels, in some cases,
one, two, or three pixels were cor-
rectly classified as “Botrytis-infected
inflorescence,” but they were not
counted because four pixels was con-
sidered the minimum number neces-
sary for classification as a “Botrytis-
infected inflorescence.” Lowering this
threshold may have slightly influenced
the results, but only to a small degree.
The SVM model and TGI threshold
resulted in high overall accuracy but
low sensitivity, which is thought to be
partly influenced by the TGI thresh-
old among others. Many of the pixels
changed by the threshold indicated ei-
ther early signs or symptoms of the
disease or contained a mix of diseased
and nondiseased pixels. Therefore,
this model did not have optimal clas-
sification capabilities needed to clas-
sify pixels that were in early stages of
disease development or were a mo-
saic of diseased/healthy pixels. This
was confirmed through visual assess-
ment during classification, whereby
slightly diseased inflorescences in false
color images (NDVI and GRMVI) ap-
peared faintly red, whereas very diseased
inflorescences appeared deep red.

The final determination consisted
of a comparison of the SVM and TGI
pixel classification model (classified
model) and conventional disease as-
sessments (field-based) for measur-
ing gray mold incidence on hemp.
Among both sampling strategies, there
was general agreement that the great-
est disease incidence was observed in
the nontreated control, and the lowest
incidence was found in treatment 3;
however, the middle two ranked treat-
ments, treatments 1 and 2, had alter-
nating rankings. Despite this switch,
the means were not significantly differ-
ent. The disease incidence estimates
seen in the classified model were much

lower percentages than those observed
in the field-based disease assessments.
This is likely attributable to the inabil-
ity to detect disease symptoms or signs
that are not visible from directly above
the plant (nadir perspective); in other
words, disease lower down the length
of the inflorescence goes unseen when
assessments are performed by an UAV.
The classical field-based sampling as-
sessed disease along the upper 30-cm
length of the inflorescence, while the
data used in the classified model most
likely contained only the uppermost
portions of each inflorescence and did
not capture the sides or entirety of the
30-cm region because of the necessary
buffer between plant tissue and soil
surface included in the model. The na-
dir perspective of the aerial flights is
one of the greatest challenges associ-
ated with remote disease detection via
UAV for this reason.

Aerial remote sensing was also
conducted 48 h later than the ground
sampling disease incidence measure-
ments. During this 48-h period, it
may have been possible for disease in-
cidence to increase and result in differ-
ent levels of disease incidence for
treatments 1 and 2 at the time of ae-
rial sampling; however, the large differ-
ences in treatment means between
these two methods made it seem
highly unlikely that the time differ-
ence accounted for most of the treat-
ment means disparity. Additionally, as
previously observed, the classified mod-
el’s sensitivity was too low to detect all
signs or symptoms of Botrytis that were
present. Disease observed through as-
sessments using the reference false color
images of the same inflorescences used
in the classified model rating was
slightly higher, but means generated
by the reference false color images
were still much lower than field-based
disease assessments. Both the classified
model assessment of disease incidence
and the reference false color images in-
cidence had the same ranking of treat-
ments. This indicates that although the
classified model may have low sensitiv-
ity, an increased sensitivity and associ-
ated decrease in false-negatives would
not have changed the rankings of gray
mold incidence seen among the fungi-
cide treatments. While the rankings
were the same among the reference
false color images and the classified
model, the reference false color im-
ages showed a significant difference
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between nontreated control and the
three biofungicide treatments, while
the classified model did not find a
significant difference between non-
treated and the three biofungicide
treatments. This indicates that if the
classified model had perfectly classified
all hemp inflorescences, resulting in
100% overall accuracy and the equiva-
lent to the reference false color images,
then the significant differences observed
among treatments would have been the
same as those found in the field-based
assessment method.

The comparison of disease inci-
dence ratings for field-based assess-
ments and the classified model resulted
in a low R2 value, which suggested
large differences in incidence ratings
between these two assessment strate-
gies for each treatment plot. The R2

value was slightly increased in the com-
parison of the reference false color im-
ages disease ratings with field-based
disease incidence assessment; however,
overall, both the classified model and
the reference false color images ratings
had a poor fit when compared with
the field-based data. Mean disease
incidence percentages for field-based
rating in comparison with the other
two methods showed large differ-
ences among treatments, but they
also largely differed within each plot.
Conversely, the reference false color
images rating compared with the clas-
sified model rating for disease inci-
dence resulted in a high R2 value.
This stronger relationship is not unex-
pected because both methods used
the same aerial images captured by the
drone. Both of these remote sensing
disease assessment methods (reference
false color images and the classified
model) had less than ideal results when
compared with those of the field-based
assessment, reinforcing that hemp gray
mold incidence data collected aerially
via remote sensing failed to capture the
proportional percentage of disease inci-
dence that was detected by field-based
disease assessment techniques.

Efficacy of disease detection
methods

This research is the first report the
detection of gray mold on hemp under
field conditions; however, Ferentinos
et al. (2019) detected gray mold on
hemp in a greenhouse where other
abiotic and biotic factors were pre-
sent. This article is also the first to

report the detection of black leg on
a Brassica crop (Bates 2021). Others
have identified leaf spot diseases on
similar plants such as Cercospora leaf
spot on sugar beet (Zhou et al. 2014)
using a multispectral camera. Mahlein
et al. (2010) detected Cercospora leaf
spot on sugar beet using an SVM for
data from a hyperspectral camera.
This work contributes to the current
literature by broadening our under-
standing of methods that can be used
for remotely sensed disease detection.
It also provides a novel vegetation in-
dex for disease detection (GRMVI)
that may be of use for detecting dis-
ease in other host–pathogen systems.
The detection of gray mold on hemp
case study also presented an alterna-
tive technique to traditional methods
of disease detection.

The remote sensing methods re-
ported in this research were similar to
what other researchers have reported
in other pathosystems. The hemp–gray
mold and turnip–black leg case studies
used methodology similar to that out-
lined by Abdulridha et al. (2019); it
consisted of image acquisition, prepro-
cessing, image segmentation, feature
extraction, and classification. These
steps are generally the standard frame-
work for many remote sensing and
model building processes. Image ac-
quisition in our research fell toward
the lower end of flight/image acquisi-
tion elevation at 10 m above ground
level for detection of gray mold in
hemp and 1.5 m for black leg in tur-
nip. Abdulridha et al. (2019) also col-
lected images to detect laurel wilt in
avocado at 10 m, but they were not col-
lected via UAV. Similar to the turnip
image acquisition case study, Dammer
et al. (2011) acquired imagery at 2.4 m
above wheat plants with Fusarium head
blight; however, images have been
taken as low as 25 cm from the plant
(Bravo et al. 2003). Others have
conducted flights at 120 m above
ground level (Albetis et al. 2017) with
limited success and at 40 m above
ground successfully (Heim et al. 2019)
based on overall accuracy assessments.
Although there are many factors that
require consideration because they ul-
timately dictate the flight parameters,
increased imagery collection elevations
that maintain accuracy should always
be a goal.

The gray mold on hemp case
study, along with many other studies

that attempted to detect fungal dis-
eases, incorporated fungicide applica-
tions that create varying degrees of
disease incidence and severity (Franke
and Menz 2007; Heim et al. 2019).
This allowed for nontreated plots,
which were heavily infected with dis-
ease, and treated plots that contained
less disease, as well as the collection of
ground truth data. We found this to
be very helpful in our hemp gray mold
study because it allowed for not only
the presence of diseased plants and
nondiseased plants at a plot level that
could be used in statistical analysis but
also provided the opportunity to com-
pare remotely sensed results with ground
truth disease incidence and application
of this work in an agricultural setting.
West et al. (2003) acknowledged the
potential benefits of optical sensors for
fungal disease detection in targeted spray
treatments but mentioned the likelihood
of underestimating the disease patch
size, which was also found to be true
in this study. Bravo et al. (2003) and
Zhang et al. (2019) evaluated various
plant cultivars with different levels of
resistance to create disease gradients,
which enabled a similar type of analy-
sis and illustrated an additional appli-
cation of remote sensing.

The case study set explored here
demonstrated limitations to this re-
search and subsequent application of
this technology. Because the lesions
caused by Plenodomus on leaves of
turnip and other brassicas are rela-
tively small, optical sensors we had
access to did not have the spatial res-
olution required for the detection of
black leg leaf spots on turnip for
drone flights at 10 m and 20 m above
ground level. Additional challenges
arise when entire turnip plants are
imaged ex situ rather than as individ-
ual leaves that are laid flat and im-
aged in situ. Field-like conditions,
such as abiotic and biotic factors
that influence the quality of image
classification, will also increase the
difficulty of remote sensing work. In
gray mold on hemp, scaling up from
a single acre to larger acreage may be
difficult and would require increas-
ingly longer flight times and data
storage space, among other factors.
Models developed from this thesis
work should be considered prelimi-
nary and could be ineffective when
used in another field or region, thus
requiring additional training data on
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a field-by-field basis until a sufficiently
large data set is developed for the re-
spective models. Additionally, these
remote sensing methods are limited
to data collected from a nadir perspec-
tive and lack the optical ability to de-
tect disease found lower in the canopy,
inside the canopy, or along the sides of
the plant and flowering/nonflowering
stems.

The processes tested here need to
be refined before they can be used by
others in the industry. This work in its
current state is not ready for wide-
spread implementation. An examina-
tion of a wider set of host–pathogen
systems for remote disease assessment
is needed and field-based detection in
the presence of other abiotic and bi-
otic factors, all of which are essential
for the widespread adoption of re-
mote disease detection. Furthermore,
the steps and processes used would be
best suited as a background language
of a web-based platform or software
that ran the tasks without the ability
of the user to manipulate code.

Conclusions
Classic field scouting techniques

for pathogen identification and dis-
ease incidence quantification can be
subjective and time-consuming. Fur-
thermore, scouting on foot can be
destructive to the plant, costly, and
burdensome, especially during the
rainy season (Barbedo et al. 2016).
Traditionally, fungicide application
programs treat pathogen pressure with
a homogenous pesticide application
rather than localized applications based
on disease presence (Mahlein et al.
2012; West et al. 2003). Remote
sensing techniques can provide an
alternative to traditional field sam-
pling, resolving many of these con-
cerns through an objective approach
to sampling and provide more in-
sightful integrated pest management
programs required for agricultural
efficiency in the future.

The potential for the application
of remote sensing and machine learn-
ing for disease detection was evaluated
in these case studies. Based on the re-
sults, a simple analysis with various
vegetation indices in the broccoli trial
revealed areas of poor plant growth
but was poorly correlated with dis-
ease; instead, fungicide phytotoxic ef-
fects were related to areas of poor

plant growth and only discernable by
conventional on-foot scouting. This
indicates limited efficacy of the image
analysis to properly categorize the cause
of changes in plant health. Alternatively,
an SVM model using NDVI and the
red band as indicators of disease allowed
for accurate detection of black leg on
turnip, and remotely sensed data were
effectively used to train an SVM using
the novel vegetation index, MRMVI,
which allowed for detection of gray
mold on hemp. While these accom-
plishments should not be overlooked,
the time and resource investment re-
quired to successfully develop effective
modeling under certain scenarios should
be noted. Further research and analysis
are necessary to validate the application
of these tools in field-based settings and
larger regional settings.

The case studies also addressed
whether remote sensing and machine
learning could be substituted as alter-
native disease detection methods rather
than the traditional field-based tech-
nique of scouting on foot. This re-
search found that the gray mold
incidence on inflorescences could be
quantified with remotely sensed data
using an SVM model, but there are
limitations to adopting it as a re-
placement for traditional field scout-
ing on foot. The results indicated
that this tool could be used as an al-
ternative to field-based techniques
for hemp grown for buds and possibly
grain if ranking the order of treatments
is prioritized over the true percentage of
disease incidence that would be found
in the field on foot. In regard to the re-
mote detection of black leg on turnip,
the results indicated that increased spa-
tial resolution is needed for field-based
applications of remote sensing technol-
ogy and further model development.

This research builds on recent
studies that have successfully used
remote sensing with multispectral sen-
sors for the detection of plant disease.
All three case studies used various
combinations of vegetation indices
with an SVM model and in the case
of the hemp model, a binary classi-
fier threshold, which is less com-
monly used but still effective in this
case. More current work gravitates
toward integrated machine learning
and, more recently, deep learning
models as both the equipment and
analysis options continue to evolve.

Flights of hemp fields were effec-
tively conducted at an average eleva-
tion comparable to other studies that
accomplished disease detection with
UAVs, while black leg on turnip de-
tection used lower elevation and likely
required an optical sensor/camera
with greater spatial resolution for
the inclusion of a UAV for disease de-
tection. Future work should demon-
strate the application of remote sensing
conducted ex situ to facilitate the
adoption of these tools by growers and
researchers. Furthermore, increasingly
higher flight elevations, examinations
of a wider set of host–pathogen sys-
tems for remote disease assessment,
and field-based detection in the pres-
ence of other abiotic and biotic factors
should be sought after because all are
essential to the widespread adoption of
remote disease detection.
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