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SUMMARY. Predictive models of optimum sweetpotato (Ipomoea batatas) harvest in
relation to growing degree days (GDD) will benefit producers and researchers by
ensuring maximum yields and high quality. A GDD system has not been previously
characterized for sweetpotato grown in Louisiana. We used a data set of 116
planting dates and used a combination of minimum CV, linear regression (LR), and
several algorithms in a data mining (DM) mode to identify candidate methods of
estimating relationships between GDD and harvest dates. These DM algorithms
included neural networks, support vector machine, multivariate adaptive regression
splines, regression trees, and generalized linear models. We then used candidate
GDD methods along with agrometeorological variables to model US#1 yield using
LR and DM methodology. A multivariable LR model with the best adjusted r2

was based on GDD calculated using this method: maximum daily temperature
(Tmax) – base temperature (B), where if Tmax > ceiling temperature [C (90 �F)],
then Tmax = C, and where GDD = 0 if minimum daily temperature <60 �F. The
following climate-related variables contributed to the improvement of
adjusted r2 of the LR model: mean relative humidity 20 days after transplanting
(DAT), maximum air temperature 20 DAT, and maximum soil temperature
10 DAT (log 10 transformed). In the DM mode, this GDD method and the
LR model also demonstrated high predictive accuracy as quantified using mean square
error. Using this model, we propose to schedule test harvests at GDD = 2600. The
harvest date can further be optimized by predicting US#1 yield using GDD in
combination with climate-based predictor variables measured within 20 DAT.

O
ptimum scheduling of the
sweetpotato harvest date is
essential in obtaining maxi-

mum yield of the economically
important US#1 yield grade. Unlike
other horticultural produce, sweet-
potato storage roots will continue to
gain size and weight if climatic con-
ditions are favorable [U.S. Depart-
ment of Agriculture (USDA), 2004].
Thus, roots with the highest grade of
US#1 have the potential to enlarge
beyond their optimal size and move

into the lower grade of jumbo. On
the other hand, harvesting the crop
before the optimum US#1 yield is
achieved generally results in a dispro-
portionate amount of the lower grade
small roots called canners relative to
the premium US#1 yield grade. In
Louisiana, growers generally schedule
harvest dates for ‘Beauregard’ sweet-
potato based on conducting test har-
vests starting at 90 d after transplanting
(DAT). This is consistent with an ear-
lier recommendation to ‘‘harvest sev-
eral representative hills at regular
intervals beginning when the plants
are from 90 to 100 days old’’
(Edmond and Ammerman, 1971).
However, it is not uncommon for
growers to delay harvest of fields that
have been planted at an earlier date
due to a perceived delay in storage
root sizing. Harvest scheduling is
further complicated by the fact that
the planting period can span 5 to 7
weeks, starting as early as 1 Apr.
(southern and central Louisiana) or
1 May (north Louisiana), and ending
around mid-July. These constraints
are important considerations in
sweetpotato harvest management
practices. In other crops, the most
common approach used for harvest
scheduling is based on the relation of
harvest date with accumulated degree
days often in combination with other
factors (Everaarts, 1999; Perry et al.,
1997). Well-characterized degree day
accumulation models and association
with maturity or harvest scheduling
are available for other crop species
such as broccoli (Brassica oleracea),
muskmelon (Cucumis melo), cucum-
ber (Cucumis sativus), and cotton
(Gossypium hirsutum) (Dufault,
1997; Jenni et al., 1998; Perry and
Wehner, 1996; Viator et al., 2005).
Heat unit summations or growing
degree days (GDD) for vegetable
production has been used for many
years on crops with limited life span of
quality in the field (Dufault, 1997).
Heat units are also potentially useful
for crops planted at different times

Units
To convert U.S. to SI,
multiply by U.S. unit SI unit

To convert SI to U.S.,
multiply by

2.54 inch(es) cm 0.3937
0.4536 lb kg 2.2046
1.1209 lb/acre kg�ha–1 0.8922

28.3495 oz g 0.0353
(�F – 32) O 1.8 �F �C (1.8 · �C) + 32
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during the season (Wurr and Fellows,
1984) or under different microcli-
mates (Wolfe et al., 1989).

Currently, we are unaware of any
published GDD model for sweetpo-
tato grown in Louisiana. Stoddard and
Weir (2002) calculated GDD for Cal-
ifornia-grown sweetpotato with a base
temperature (B) of 60 �F. Accumu-
lated GDD has also been calculated for
North Carolina growing conditions
(Seem et al., 2003) with B = 70 �F.
Neither model specified a maximum
or ceiling temperature. The most suit-
able method and combinations of B
and C for calculating GDD have been
traditionally identified through two
basic approaches: minimum CV (CV)
(Dufault, 1997; Jenni et al., 1998) and
linear regression (LR) (Stenzel et al.,
2006; Viator et al., 2005). The CV

method identifies candidate GDD
accumulation methods through com-
parison of CV values from combina-
tions of GDD methods, B, and C. The
LR method identifies the candidate
GDD method with the best linear fit
with a character of interest like harvest
date, yield, or phenological stage.
Once a suitable GDD model has been
identified, further regression model-
ing is typically performed to identify
other predictor variables such as soil,
climate, and other morphological var-
iables (Jenni et al., 1996; Viator et al.,
2005). Togari (1950) has previously
documented that temperature in the
first 20 DAT can exert significant in-
fluence on the final storage root yield.

Recently, Clapham and Fedders
(2004) compared LR and neural net-
works (NN) in modeling vegetative
development of berseem clover (Tri-
folium alexandrinum) as a function
of GDD and concluded that NN were
preferred when a priori knowledge of
temperature thresholds was not avail-
able. NN, along with other adaptive
and nonparametric methods are
increasingly being used in agricultural
research for predictive purposes. An
important characteristic of these tech-
niques is their adaptive nature with
regard to learning by examples to
solve problems (Park et al., 2005).
These methods also include regres-
sion tree (RT) (Yang et al., 2003),
support vector machine (SVM)
(Maenhout et al., 2007), multivariate
adaptive regression splines (MARS)
(Turpin et al., 2005), and generalized
linear models (GLM) (Benjamini and
Leshno, 2005). Several of these

methods are being used in data min-
ing (DM) applications. DM involves
the use of algorithms that explore
data, develop models, and discover
previously unknown patterns (Maimon
and Rokach, 2005). DM approaches
are increasingly being used in an
agricultural context (Bui et al.,
2006; Ekasingh, et al., 2005). DM is
also considered the core of ‘‘knowl-
edge discovery in databases’’ (KDD),
an automatic, exploratory analysis
and modeling of large data reposito-
ries (Maimon and Rokach, 2005).
The DM modeling approach typically
partitions a database into training
(TRD) and testing (TED) data sets.
Models are developed using the train-
ing partition and predictive accuracy
is calculated using the testing data
set. Depending upon the implemen-
tation of the DM software, a third
partition is also created [i.e., valida-
tion data set (VAD)]. VAD is typically
used to prevent overfitting during
model development. Many of these
‘‘machine-driven’’ algorithms can re-
duce subjectivity and information loss
due to data transformations to meet
traditional parametric assumptions
(Turpin et al., 2005). Previous work
that used NN and RT to predict
aflatoxin in peanut [Arachis hypogaea
(Henderson et al., 2000)] and ending
irrigation in cotton (Tronstad et al.,
2003), respectively, provide examples
of the use of DM methodology in
developing GDD-based models.

Our study sought to identify the
appropriate accumulated GDD model
for scheduling the harvest of ‘Beau-
regard’ sweetpotato grown in Louisi-
ana. We also sought to assess the
feasibility of using accumulated GDD
along with agrometeorological varia-
bles to improve harvest date predic-
tion for sweetpotato based on a target
yield using LR and DM approaches.

Materials and methods
DATA. Yield data from 118

planting dates spanning the years
from 2002 to 2007 were compiled
into a single database (GDDLA-Y).
Storage roots were graded according
to USDA standards (USDA, 2005):
US #1 grade = 2 to 3-1/2 inches in
diameter, 3 to 9 inches in length,
maximum weight not more than 20
oz; canner = 1 to 2 inches in diameter,
2 to 7 inches in length; jumbo = larger
versus the others, but marketable.
These tests represented various

planting times (May to July), cultural
practices (irrigation regimes, weed
control, and cropping patterns), man-
agement regimes (experimental sta-
tion and on-farm replicated trials),
and locations [northern and south
central Louisiana (Table 1)]. The
yield data were obtained from plots
that were planted with ‘Beauregard’
and no significant year · US#1 yield
interaction was detected. Yield in the
US #1 grade ranged from 38 to 617
50-lb bushels per acre (mean = 306
bushels/acre). Days to harvest ranged
from 83 to 166 DAT.

SAMPLING. Agrometeorological
data were collected from the follow-
ing Louisiana Agriclimatic Informa-
tion System (LAIS) weather network
stations (Louisiana Agriclimatic In-
formation, 2008): Burden Center,
Baton Rouge (BTR), R & D Research
Farm, Port Barre (SC), Sweet Potato
Research Station, Chase (CHS,
NE10), and University of Louisiana
at Monroe (NE). Values enclosed in
parentheses represent location of test
sites as defined in Table 1. Daily
agrometeorological variables in-
cluded maximum air temperature
(MAXAIR), minimum air tempera-
ture (MINAIR), mean air temper-
ature (MEANAIR), maximum soil
temperature (MAXSOIL), minimum
soil temperature (MINSOIL), mean
soil temperature (MEANSOIL), radi-
ation (RAD), maximum relative
humidity (MAXRH), minimum rela-
tive humidity (MINRH), mean RH
(MEANRH), and total rainfall
(RAIN). Means (MAXAIR, MIN-
AIR, MEANAIR, MAXSOIL, MIN-
SOIL, MEANSOIL, RAD, MAXRH,
MINRH, and MEANRH) or totals
(RAIN) were calculated for the fol-
lowing periods: 5, 10, 20, and 30
DAT for each planting date. Normal-
ity analysis was performed on the
combined yield and agrometeorolog-
ical data set using SAS Analyst (ver-
sion 9.2; SAS Institute, Cary, NC).
Outliers were identified using the
‘‘filter outliers’’ node in SAS Enter-
prise Miner (version 4.5). Only the
following climate-related variables
met the Kolmogorov-Smirnov (K-S)
test for normality: MAXSOIL 5 DAT
(MAXSOIL5), RH 5 DAT (RH5, log
10 transformed), MINSOIL 30 DAT
(MINSOIL30), MINRH30, MAX-
SOIL10 (log 10 transformed), MEAN-
SOIL30, MAXAIR20, MINSOIL20,
MINRH10, RH10, MINRH20, and
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RH20. Following tests for normality,
we performed correlation and var-
iance inflation factor analyses in SPSS
(version 15; SPSS Inc., Chicago) to
test for variable independence. The
following variables were identified to
be independent and were used in all
subsequent multiple variable LR
experiments (forward stepwise selec-
tion, criterion for inclusion P = 0.05):
RH20, MAXSOIL10, and MAX-
AIR20. Subsequent modeling experi-
ments were performed on this
reduced database, GDDLA-YMET
(n = 116). RH20 ranged from 69%
to 92% (mean = 79%, SD = 5.5),
MAXSOIL10 ranged from 76 to
107 �F (mean = 89 �F, SD = 6.75),
and MAXAIR20 ranged from 83 to
94 �F (mean = 89 �F, SD = 2.11).

METHODS FOR CALCULATING

ACCUMULATED GDD. Eight methods
for calculating GDD were used
(Table 2). The following base (B)
temperatures were used: 60, 65, and
70 �F. The following ceiling (C)
temperatures were used: 80, 85, 90,
95, and 100 �F. For the purpose of

this study, we used this notation (xx-
XX) where xx = B and XX = C. GDD
coefficients of variation were calcu-
lated using all combinations of meth-
ods (M), B, and C for each planting ·
harvest date (PH) combination.

LR MODELING. Single-variable
LR analysis (criterion for inclusion P
= 0.05) was performed using US#1 as
the dependent variable (DV) and
GDD as the predictor variable. Sub-
sequent multiple LR experiments
(forward stepwise selection, criterion
for inclusion P = 0.05) were per-
formed using GDD, RH20, MAX-
SOIL10, and MAXAIR20 as
predictor variables. SAS Analyst (ver-
sion 9.2) was used to run the LR
modeling experiments. Partial resid-
ual plots were generated using Statis-
tica (version 8; Statsoft, Tulsa, OK).

DM METHODS. Insightful Data
Miner (version 8; Insightul Corp.,
Seattle) was used to randomly gener-
ate five unique sets (five pseudorepli-
cations) of training and testing data
partitions from GDDLA-YMET. Each
pseudoreplication was generated by

specifying a unique number to ‘‘seed’’
the random sampling-based parti-
tioning process. The proportion of
training to testing data was 50%:50%
(50% training:50% testing). Statistica
Data Miner (version 8, Statsoft) was
used to develop models from the
training partition and measure pre-
dictive accuracy on testing partition.
An overview of the DM-based model
development (‘‘DM mode’’) and test-
ing is summarized in Fig. 1. The
following algorithms were used: LR,
SVM, NN, RT, MARS, and GLM. In
most cases, the default software set-
tings were used performing the DM
algorithms. SVM: regression type 1,
kernel = RBF, v-fold cross validation
= 10, training = 1000 iterations. NN:
training sample size = 80%; network =
MLP, maximum hidden units = 13;
minimum hidden units = 4; hidden
neurons = identity, logistic, Tanh; out-
put neurons = identity, logistic, Tanh.
RT: stopping option for pruning =
prune on variance, minimum n per
node = 5, maximum number of nodes
= 1000, v-fold cross validation = 10,

Table 1. Location of experimental test sites for ‘Beauregard’ sweetpotato in Louisiana.

Test site
location in Louisiana North latitude West longitude Soil taxonomic class

Baton Rouge (BTR) 30�24#26.9994## 91�8#44.9982## Fine-silty, mixed, superactive, thermic
Aeric Epiaqualfs

Chase (CHS) 32�5#43.08## 91�42#21.2394## Fine-silty, mixed, active, thermic
Typic Glossaqualfs

Northeast #5 location (NE5) 32�54#3.9594## 91�21#24.48## Fine-silty, mixed, active, thermic Oxyaquic
Fraglossudalfs-Fine-silty, mixed, active,
thermic Typic Glossaqualfs

Northeast #7 location (NE7) 32�56#49.92## 91�18#14.4## Fine-silty, mixed, active, thermic Typic Hapludalfs
Northeast #8 location (NE8) 32�52#36.1194## 91�20#26.5194## Fine-silty, mixed, active, thermic Oxyaquic

Fraglossudalfs-Fine-silty, mixed, active,
thermic Typic Glossaqualfs

Northeast #9 location (NE9) 32�59#8.1594## 91�17#38.76## Fine-silty, mixed, active, thermic Oxyaquic
Fraglossudalfs-Fine-silty, mixed, active,
thermic Typic Glossaqualfs

Northeast #10 location (NE10 32�0#43.5594## 91�38#45.2394## Fine-silty, mixed, active, thermic Aquic
Fraglossudalfs

Northeast #12 location (NE12) 32�49#59.9874## 91�39#35.9994## Very-fine, smectitic, thermic Chromic Epiaquerts
South-central #1 location (SC1) 31�4#31.0794## 92�2#46.3194## Fine-silty, mixed, active, thermic Typic

Glossaqualfs
South-central #2 location (SC2) 31�3#32.76## 92�2#24 ## Fine-silty, mixed, active, thermic Oxyaquic

Fragiudalfs
South-central #3 location (SC3) 30�41#47.76## 92�9#18 ## Fine-silty, mixed, superactive, thermic Aeric

Epiaqualfs
South-central #4 location (SC4) 30�26#54.9594## 92�12#38.88## Fine-silty, mixed, active, thermic Typic

Hapludalfs
South-central #6 location (SC6) 31�11#18.96## 92�3#51.84## Coarse-silty, mixed, superactive, nonacid,

thermic Typic Udifluvents
South-central #11 location (SC11) 31�7#50.9982## 92�6#24.9978## Fine-silty, mixed, superactive, thermic Aeric

Epiaqualfs
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standard error rule = 1. MARS: max-
imum number of basis functions
= 21, degree of interactions = 1.
GLM: model building method = for-
ward stepwise, stepwise selection

criterion = probability, criterion for
best subset selection = r2. Statistica
Data Miner automatically generated
and exported the ‘‘trained’’ model,
applied it to the testing data set, and

generated the measurements of pre-
dictive accuracy (Fig. 1). Several
measurements of predictive accuracy
were generated, but we only used
mean square error (MSE) for compar-
ing model performance where

MSE =
XN

i=1

ðEi � OiÞ2=ðN � 1Þ

where Ei = predicted value of case
i, Oi = observed value of case i, and
N = number of observations. The
exported model was in a predictive
markup modeling language (PMML)
format (Data Mining Group, 2008).
To investigate the effect of the train-
ing sample size on model perform-
ance, new paired training and data
sets were generated from GDDLA-
YMET (5 pseudoreplications) with
the following proportion of training
and testing data: 50%:50%, 70%:30%,
and 90%:10%. DM experiments were
performed with each set of training
and testing data, along with evalua-
tion of prediction accuracy.

Results
M1 [(Tmax + tmin)/2) – B] has

been considered as the standard

Fig. 1. Overview of the data mining process in Statistica Data Miner (version 8; Statsoft, Tulsa, OK). TRAIN = training
data set, TEST = testing data set, REG = linear regression, GLM = generalized linear model, RT = regression tree,
NN = neural networks, MARS = multivariate adaptive regression, SVM = support vector machine, FIT = calculation of
model accuracy, OUTPUT nodes = output for each algorithm, Goodness of Fit for Multiple Inputs = calculation of
multiple mean square error for each algorithm. These interconnected nodes represented one replication using the
specific pair of TRAIN and TEST. These steps were repeated for n unique pairs of TRAIN and TEST.

Table 2. Methods used to calculate accumulated growing degree days (GDD) for
‘Beauregard’ sweetpotato grown in Louisiana.

Methodz Descriptiony

M1 [((Tmax + tmin)/2) – B] where if Tmin < 0, then GDD = 0.
M2 (Tmax – B) where if Tmin < 0, then GDD = 0.
M3 If Tmax > C, then

Tmax = C and GDD = [((Tmax + Tmin/2) – B] where
if Tmin < 0, then GDD = 0, or if Tmax £ C, then use M1.

M4 If Tmax > C, then
Tmax = C and GDD = (Tmax – B) where
if Tmin < 0, then GDD = 0 or if Tmax £ C, then use M2.

M5 If Tmax > C, then
Tmax adj = C – (Tmax – C) and GDD = [((Tmax adj + Tmin)/2) – B] where
if Tmin < 0 then GDD = 0 or If Tmax £ C, then use Equation M1.

M6 If Tmax > C, then
Tmax adj = C – (Tmax – C) and GDD = (T max adj – B) where
if Tmin < 0, then GDD = 0 or if Tmax £ C, then use M2.

TRIx Calculations were performed using DEGDAYw

SINEv Calculations were performed using DEGDAY
zMethods M1 to M6 were based on Dufault (1997), Jenni et al., (1996), and Perry et al., (1986).
yTmax = maximum daily temperature, Tmin = minimum daily temperature, B = base temperature, C = ceiling
temperature.
xTRI = single triangle method. This method used daily Tmin and Tmax to produce an equilateral triangle over
a 24-h period. GDD were estimated by calculating the area between the two thresholds that is enclosed by
the triangle (Zalom et al., 1983).
wDEGDAY is a spreadsheet used for calculating GDD (Snyder, 2005).
vSINE = single sine method. This technique used daily Tmin and Tmax to produce a sine curve over a 24-h period.
GDD were estimated by calculating the area above the threshold and below the curve (Zalom et al., 1983).
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Table 3. Coefficients of variation (normal font), adjusted r2 (bold), and mean square errors (italics) for eight methods of calculating accumulated growing degree days
(GDD) from transplanting to harvest in ‘Beauregard’ sweetpotato grown in Louisiana.

Base (�F)z Ceiling (�F)

GDD methody

M1 M2 M3 M4 M5 M6 TRI SINE

60 ncx 17.35w 13.85
0.04 0.10

16298 Sv 15489 S
80 18.41 15.67 25.92 25.77 12.51 12.51

0.02 0.12u
NS

t
NS 0.06 0.06

17194 S 15518 S 17665 G 17548 M 16533 R 16604 R
85 17.04 13.22s 19.11 15.87 12.58 12.48

0.03 0.13 0.02 0.04 0.06 0.06
16540 S 15224

G, R
17390 R 17194 R 16499 S 16411 S

90 16.85 12.99 16.99 13.42 12.8 12.78
0.04 0.11 0.02 0.06 0.06 0.06

17470 R 16038 17694 R 16968 R 17009 R 16997 R
95 17.08 13.56 16.88 13.49 12.99 13.11

0.04 0.09 0.03 0.07 0.06 0.06
17028 R 16048 S 17125 R 16399 R 16913 R 16866 R

100 17.3 13.8 17.26 13.77 13.04 13.11
0.04 0.10 0.04 0.09 0.06 0.07

17027 S 17737 T 17037 S 17737 T 17711 S 17737 T
65 nc 21.14 15.36

0.02 0.07
17313 R 16448 R

80 24.42 17.63 49.47 37.85 12.63 12.61
NS 0.10 NS NS 0.04 0.04

17517 R 15879 S 17737 G,R,T 17722 S 16985 S 16959 S
85 21.34 13.98 26.39 17.68 12.9 12.61

NS 0.10 NS 0.01 0.04 0.04
15799 R 16643 S 16017 R 18843 R 15298 R 18025 S

90 20.94 14.67 21.3 14.49 13.34 13.14
NS 0.07 NS 0.03 0.04 0.04

15794 R 18065 R 15939 R 18748 R 15266 R 18378 S
95 20.79 15.02 20.54 14.89 13.7 13.74

0.01 0.06 ns 0.04 0.04 0.04
15750 R 17675 S 15844 R 18219 S 15208 R 16782 S

100 21.05 15.27 20.98 15.2 13.8 13.8
0.01 0.06 0.01 0.06 0.04 0.05

17345 R 16542 R 17377 R 16638 R 16962 R 16972 S
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method for calculating GDD and is
frequently used for identifying alter-
native GDD models (Dufault, 1997).
The CV values calculated for each M ·
C · B · PH ranged from 12.48
(SINE, 60–85) to 54.45 (M6, 70–
80) (Table 3). The lowest CV for M1
was 17.35 (B = 60 �F). The adjusted
r2 values of single-variable LR models
ranged from 0.01 (M5, 65–100) to
0.13 (M4, 60–85) (Table 3). The
lowest overall MSE using the DM
approach was 15208 calculated using
REG (TRI, 65–95). The lowest
observed MSE for M1 was 16298
(SINE). To investigate if further
improvement in model accuracy
(increased adjusted r2, decreased
MSE) was possible, we used SINE
(60–80, 60–85), M4 (60–85, 60–80,
60–90), and TRI (60–80, 65–95) in
multiple LR and DM experiments
that included agrometeorological
predictor variables (Table 4). These
methods and combinations of B · C
represented the three best-performing
models in each approach (i.e., mini-
mum CV, LR, and DM). Multiple
variable LR models showed an
improvement in adjusted r2 values
when agroclimatic variables (MAX-
SOIL10 log 10 transformed, RH20,
and MAXAIR20) were used along
with candidate GDD methods (Table
4). The M4 (60–90)-based multivari-
able model ranked first in terms of
adjusted r2 value at 0.42, had the
lowest MSE (DM mode), and repre-
sents the best candidate for predicting
US#1 yield for the current data set.
M4 (60–85) was ranked second in LR
and DM.

Partial residual plots summarized
the effect of each predictor variable
after factoring out the effects of other
covariables (Fig. 2). In DM mode,
SVM (M4, 60–90), REG (M4, 60–
90), and REG (SINE, 60–85) were
the best-performing models for pre-
dicting US#1 yield using GDD and
agrometeorological variables (Table
5). RT and NN models were ranked
near the bottom in terms of predictive
accuracy. Increasing the size of the
training data set (with a consequent
decrease in the size of the testing data
set) did not result in significant
increase of predictive accuracy for
any model except for NN (Fig. 3).
While the other models showed a
slight and gradual decrease in MSE,
the NN MSE showed instability over
the various training sample sizes [i.e.,T
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MSE increased from 50%:50% to
70%:30%, and then decreased at
90%:10% (Fig. 3)]. The relationship
between GDD, harvest dates, climatic
variables, and actual and predicted
US#1 yield for 2007 field trials are
presented in Table 6. The accumu-
lated GDD at harvest ranged from
2774 (214.97 bushels/acre) to 3389
(477.05 bushels/acre). Based on
yield and GDD estimates of
GDDLA-YMET, GDD = 2600
appears to be the suitable GDD-based
scheduling of test harvest. In
GDDLA-YMET, nine of 10 harvest
dates before GDD = 2600 resulted in
US#1 yield below 300 bushels/acre
(data not shown). This yield level has
been suggested by growers in Louisi-
ana as the ‘‘break even point’’ (K.
Thornhill, personal communication).

Discussion
Our results indicate that alterna-

tive methods of calculating accumu-
lated GDD lowered CVs, increased
LR-adjusted r2 values, and reduced
MSE relative to M1. Several candi-
date models were identified using
multiple approaches (i.e., minimum
CV, LR, and DM). Inclusion of agro-
meteorological predictor variables in
single-variable GDD models
increased model goodness-of-fit (as
measured by adjusted r2) and predic-
tive ability (as measured by MSE) and

helped to identify the best candidate
for calculating GDD. The use of DM
methods helped to quantify predic-
tive accuracy of the candidate models.
MSE is generally considered the most
robust measure of overall predictive
model performance (Schwartz et al.,
1997). Our results are consistent with
previous reports that heat units alone
cannot explain the entire develop-
ment of a crop (Arnold, 1960; Perry
and Wehner, 1996). Our data also
suggested a ceiling temperature of 90
�F for computing accumulated GDD
for ‘Beauregard’ sweetpotato grown
in Louisiana. Using a different
method for calculating accumulated
GDD may introduce more variation,
thereby reducing prediction precision
(Dufault, 1997). Regardless of the
calculation method, Higley et al.
(1986) emphasized that degree days
are never more than estimates of
developmental time. Although Arnold
(1959) has suggested that a base
temperature for a linear heat unit
system may not be identical with all
of the physiological requirements of
the plant, the empirically derived base
and ceiling values were consistent
with known optimal temperature
ranges in sweetpotato growth and
yield. For example, in a review of the
effect of atmospheric and soil factors
that influenced sweetpotato growth
and yield, Ravi and Indira (1999)

noted that night air temperature
below 59 �F suppressed storage root
formation while promoting shoot
growth. At air temperatures greater
than 86 �F, an increase in indole acetic
acid oxidase activity caused reduction
in storage root formation and growth
(Ravi and Indira, 1999). Taking all of
these into consideration, using a dif-
ferent method for calculating GDD
for ‘Beauregard’ sweetpotato in Lou-
isiana might lead to less precise sched-
uling of time-critical management
activities (e.g., test harvest and har-
vest). For example, prevailing tem-
peratures are generally lower in
‘‘early’’ planting dates in May [5-year
mean Tmax = 84.1 �F, mean mini-
mum temperature (Tmin) = 62.4 �F]
compared with ‘‘late’’ planting
dates in July (5-year mean Tmax =
88.4 �F, mean Tmin = 70.5 �F) in two
northeast Louisiana locations (CHS,
NE10). If M1 or M2 (both methods
do not require a ceiling temperature)
were used to calculate GDD, an ear-
lier harvest date for ‘‘late’’ planted
sweetpotato would have been pre-
dicted due to rapid accumulation of
GDD associated with higher Tmax
compared with the ‘‘early’’ planting
date. When the negative effect of
high temperature (greater than 86
�F) on storage root initiation is con-
sidered (Ravi and Indira, 1999), it is
apparent that rapid accumulation of

Table 4. Linear regression equations, adjusted r2 values, and mean square errors (MSE) of data mining models describing
US#1 yield based on various growing degree day (GDD) methods and agrometeorological factors for ‘Beauregard’
sweetpotato grown in Louisiana.

Base (�F)z Ceiling (�F)
GDDy

method Adjusted r2 MSEx Linear regression equations

60 90 M4 0.42 10085 Y = 548.71 + 0.14 M4 – 1333.34
MAXSOIL10 + 14.50 MAXAIR20 + 8.10 RH20

60 85 M4 0.40 10476 Y = 594.95 + 0.14 M4 – 1304.10
MAXSOIL10 + 14.80 MAXAIR20 + 6.89 RH20

60 85 SINE 0.38 10557 Y = 786.35 + 0.19 SINE – 1434.81
MAXSOIL10 + 14.00 MAXAIR20 + 8.42 RH20

60 80 TRI 0.37 10569 Y = 721.29 + 0.21 TRI – 1425.47
MAXSOIL10 + 14.57 MAXAIR20 + 8.37 RH20

60 80 SINE 0.37 10574 Y = 766.81 + 0.21 SINE – 1439.97
MAXSOIL10 + 14.46 MAXAIR20 + 8.28 RH20

65 95 TRI 0.37 10754 Y = 1121.24 + 0.19 TRI – 1436.49
MAXSOIL10 + 8.78 RH20 + 10.61 MAXAIR20

60 80 M4 0.36 11198 Y = 936.18 + 0.12 M4 – 1317.44
MAXSOIL10 + 13.15 MAXAIR20 + 6.19 RH20

z(�F – 32)/1.8 = �C.
yM1 to M6, TRI, and SINE as defined in Table 2.
xMSE of linear regression (LR) model in data mining (DM) mode. MSE method of calculation as described in Materials and methods; calculations were performed using
Statistica Data Miner (version 8; Statsoft, Tulsa, OK). In DM mode, LR MSE values represent average of five experimental runs using five unique pairs of randomly sampled
training (n = 58) and testing (n = 58) data partitions.
wVariable selection used: forward stepwise linear regression performed with P = 0.05 as criterion for inclusion. Calculations performed in SAS Analyst (version 9.2; SAS
Institute, Cary, NC). Modeling database = GDDLA – YMET (n = 116), as described in Materials and methods. MAXSOIL10 = mean maximum soil temperature 10 d after
transplanting (DAT); RH20 = mean relative humidity 20 DAT; MAXAIR20 = mean maximum air temperature 20 DAT.
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GDD due to high Tmax does not
translate to an early harvest or higher
potential yield. This is in part dem-
onstrated in Table 6 where the 28
June planting date achieved GDD =
2600 at 89 d (compared with 91 d for
the 22 May planting date). Even
when harvested at a comparatively
later date (106 DAT), the US#1
storage root yield of the ‘‘late’’ plant-
ing was similar to the 22 May planting
(92 DAT).

The application of DM to agri-
cultural field data has previously been
described (Frank et al., 2004; Witten
and Frank, 2005), and several

examples exist in the scientific liter-
ature (Bui et al., 2006; Ekasingh
et al., 2005). As scientific instruments
continue to generate massive data
sets, the KDD approach and, in par-
ticular DM methods, play important
and enabling roles (Fayyad et al.,
1996). We used DM methodology
to provide estimates of predictive
accuracy wherein ‘‘trained models’’
were applied on ‘‘test (nontraining)
data.’’ In the DM mode, the best LR
model (M4, 60–90) was ranked sec-
ond in terms of predictive ability
(Table 5). The best-performing DM
model used SVM (M4, 60–90)

(Table 5). SVMs are a set of unsuper-
vised learning methods originally
developed to solve classification prob-
lems, but were later extended to
the domain of regression problems
(Vapnik et al., 1997). SVMs have
been used in agricultural research to
predict soil moisture (Gill et al.,
2006) and maize hybrid performance
(Maenhout et al., 2007). Several
studies have demonstrated that DM-
based techniques, especially NN and
RT, matched or exceeded the predic-
tive accuracy of LR-derived models
(Clapham and Fedders, 2004; Park
et al., 2005). In our work, the

Fig. 2. Partial residual plots of the effect of a predictor variable after adjusting for the effects of other covariables on
‘Beauregard’ sweetpotato US#1 storage root yield in Louisiana. Effect of accumulated growing degree days (M4) on
US#1 storage root yield after adjusting for RH20, MAXAIR20, and MAXSOIL10 (log 10 transformed) (A); effect
of RH20 on US#1 storage root yield after adjusting for M4, MAXAIR20, and MAXSOIL10 (log 10 transformed) (B);
effect of MAXAIR20 on US#1 storage root yield after adjusting for M4, RH20, and MAXSOIL10 (log 10 transformed)
(C); effect of MAXSOIL10 (log 10 transformed) on US#1 storage root yield after adjusting for M4, RH20, and
MAXAIR20 (D). M4 = maximum daily temperature (Tmax) – base temperature (B), where if Tmax > ceiling temperature
{C [90 �F (32.2 �C)]}, then Tmax = C, and where GDD = 0 if Tmin < 60 �F. MAXSOIL10 = mean maximum soil
temperature 10 d after transplanting (DAT); RH20 = mean relative humidity 20 DAT; MAXAIR20 = mean maximum
air temperature 20 DAT. Plots were generated using Statistica (version 8; Statsoft, Tulsa, OK). Dashed lines represent
95% confidence interval for regression line (solid line) (Statsoft, 2008).
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predictive accuracy of NN and RT
models were ranked lowest (high
MSE), suggesting that the trained
models likely overfit the training data,
leading to high MSE estimates. Over-
fitting pertains to cases where the
model gives good results when

applied to the training data, but yields
poor results when applied to a new set
of observations [i.e., testing data
(Levin and Zahavi, 2005)]. RT- and
NN-based models have been doc-
umented as prone to produce models
that overfit data (Khoshgoftaar and

Allen, 2001; Zhang, 2005). The rel-
atively small sample size of the mod-
eling database likely contributed to
the instability of the NN-derived
models. While a data set of 100 to
10,000 records is considered ‘‘large’’
in traditional statistics, in DM, 104

may be considered a small sample size
(Benjamini and Leshno, 2005). Dur-
ing model development, NN further
splits the training data into the actual
training sample and a validation sam-
ple. Thus, the actual sample size used
in NN model building is smaller than
the initial sample size (Zhang, 2005).
A sample size of 40 and 74 is consid-
ered sufficient for classification and
time series problems, respectively
(Zhang, 2005). However, Kim
(2008) reported that LR techniques
were superior to DM regardless of the
number of variables and sample size
when continuous independent varia-
bles were used, and that NN were
better when categorical variables were
involved. This information can be
used for future studies where catego-
rical variables are involved. Our
results underscore the necessity of
comparing the results derived from
DM-oriented methodology with tra-
ditional LR approaches to verify the
suitability or advantages of using one
method or the other (Zhang, 2005).
The DM approach can be used in
conducting preliminary assessment
for the presence of nonlinear relation-
ships, especially in large data sets. Cur-
rent DM software applications have
built-in functions that automate this
procedure. DM software applications
also include tools that are potentially
useful in crop growth modeling work.
For example, various DM software
feature ‘‘deployment’’ modules that
automatically generate computer pro-
gramming code (e.g., C and C++) so
that ‘‘trained’’ models can be in-
corporated into compiled programs
that underlie deterministic growth
models or decision support systems.

The main premise of using non-
linear methods in modeling plant
development is that growth response
to temperature is often nonlinear
(Clapham and Fedders, 2004; Park
et al., 2005). Our experimental
results indicate that the variables used
in this study failed to show nonlinear-
ity, and various DM algorithms that
fit nonlinear functions or interactions
did not contribute to increased pre-
dictive accuracy. The partial residual

Table 5. Mean square error (MSE) of data mining models describing the
relationship between US#1 yield and various growing degree day (GDD)
methods and agrometeorological factors for ‘Beauregard’ sweetpotato grown
in Louisiana.

Base (�F)z Ceiling (�F) GDD methody Modelx MSEw

60 90 M4 SVM 11,343.90
60 90 M4 REG 11,709.40
60 85 SINE REG 12,194.70
60 85 SINE SVM 12,284.70
60 85 M4 REG 12,613.90
60 85 M4 SVM 12,636.60
60 80 M4 SVM 12,668.70
60 80 SINE SVM 12,776.10
60 80 TRI SVM 12,815.50
65 95 TRI REG 12,845.10
60 80 TRI REG 12,917.10
60 80 SINE REG 12,941.00
60 80 M4 REG 13,384.90
60 80 M4 GLM 13,562.80
65 95 TRI SVM 13,583.00
60 90 M4 GLM 13,586.00
60 85 M4 GLM 13,655.00
60 90 M4 MARS 13,744.00
60 80 TRI MARS 13,791.80
60 80 SINE MARS 13,910.10
65 95 TRI GLM 14,056.80
60 80 TRI GLM 14,123.40
60 80 SINE GLM 14,150.40
65 95 TRI MARS 14,306.20
60 85 SINE GLM 14,405.20
60 85 M4 MARS 14,410.30
60 85 SINE MARS 14,430.40
60 80 TRI RT 14,739.30
60 80 M4 MARS 14,845.40
65 95 TRI RT 15,466.70
60 80 M4 RT 15,474.20
60 85 M4 RT 15,593.60
60 80 SINE RT 16,241.20
60 85 SINE RT 16,521.20
60 90 M4 RT 17,071.40
60 85 SINE NN 47,837.80
60 80 TRI NN 93,841.80
60 80 SINE NN 446,374.00
60 80 M4 NN 1,211,640.00
60 85 M4 NN 9,786,120.00
65 95 TRI NN 1.77E + 10
60 90 M4 NN 1.55E + 17
z(�F – 32)/1.8 = �C.
yM1 to M6, TRI, and SINE as defined in Table 2.
xSVM = support vector machine, MARS = multivariate adaptive regression, NN = neural networks, REG = linear
regression, RT = regression tree, GLM = generalized linear model. Calculations were performed using Statistica
Data Miner (version 8; Statsoft, Tulsa, OK). In most cases, default software settings were used. Details of
calculations are described in Materials and methods.
wValues represent average of five experimental runs using five unique pairs of randomly sampled training (n = 58)
and testing (n = 58) data partitions. Method of calculating MSE is defined in Materials and methods; calculations
were performed using Statistica Data Miner (version 8).
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plots (Fig. 2) help to show the linear
relationship of these predictor varia-
bles. It is possible that certain growth
stages of the sweetpotato may re-
spond nonlinearly to temperature or

that certain other variables may dem-
onstrate nonlinear relationship to
covariables and yield. Kays (1985)
cited studies that documented that
early in the growing season, crop

growth rate (CGR) was initially slow;
highest CGR was achieved 70 to 98
DAT, after which it decreased. Kays
(1985) also noted that for a planting
date of 16 June, net photosynthesis
tended to increase until the middle
of September (about 87 DAT), and
then gradually decreased as harvest
approached. This decline was attrib-
uted to a decline in gross photosyn-
thesis rather than an increase in
respiration. It appears that sweetpo-
tato respond linearly to temperature
for most of the growing season, but
this response becomes less linear as
the harvest approaches. At this time,
we are unable to account for the exis-
tence of this nonlinear relationship
due to the experimental limitations
imposed by our modeling data set.

The empirically derived models
in this study were specific to the range
of environments where the yield trials
were conducted. To some extent,
such models can be calibrated for
use in other locations outside of Lou-
isiana. Empirical models can be used
as explanatory tools for identifying
the hidden structure of crop growth

Fig. 3. Average mean square error (log transformed) of various data mining models
generated with different sizes of training samples. REG = linear regression, GLM =
generalized linear model, RT = regression tree, NN = neural networks, MARS =
multivariate adaptive regression, SVM = support vector machine. Calculations
performed in Statistica Data Miner (version 8; Statsoft, Tulsa, OK). Modeling
database = GDDLA-YMET (n = 116).

Table 6. Agrometeorological variables, accumulated growing degree days (GDD) to test harvest and harvest, and actual and
predicted US#1 storage root yields of ‘Beauregard’ sweetpotato grown in Louisiana.z

Location
Planting

date
Harvest

date

Agrometeorological variablesy Accumulated GDDx US#1 yield (no. 50-
lb bushels/acre)w

MAXSOIL10
(�F)

MAXAIR20
(�F)

RH20
(%)

To test
harvest To harvest Actual Predictedv

CHSu 22 May 22 Aug. 76.64 87.76 82.64 2,609 (91)t 2,609 (92)s 324.06 343.33
22 May 29 Aug. 76.64 87.76 82.64 2,849 (99) 343.03 376.93
30 May 4 Sept. 79.18 89.67 83.90 2,618 (90) 2,618 (97) 420.63 363.51
30 May 11 Sept. 79.18 89.67 83.90 3,038 (104) 526.37 422.31
7 June 12 Sept. 81.82 91.19 84.12 2,614 (89) 2,854 (97) 419.07 401.42
7 June 21 Sept. 81.82 91.19 84.12 3,114 (106) 460.75 437.82

14 June 18 Sept. 81.45 90.14 85.07 2,614 (89) 2,814 (96) 427.63 390.92
14 June 28 Sept. 81.45 90.14 85.07 3,108 (106) 553.58 432.08
22 June 5 Oct. 82.36 88.95 88.69 2,615 (89) 3,089 (105) 534.92 435.05
22 June 19 Oct. 82.36 88.95 88.69 3,389 (119) 494.22 477.05
28 June 12 Oct. 82.00 87.62 92.45 2,616 (89) 3,091 (106) 308.67 449.03

BTR 15 May 13 Aug. 81.36 85.90 69.62 2,601 (96) 2,502 (90) 101.23 183.53
15 May 7 Sept. 81.36 85.90 69.62 3,252 (115) 279.48 217.13
6 June 7 Sept. 89.73 92.00 69.62 2,629 (82) 2,774 (93) 148.63 214.97
6 June 1 Oct. 89.73 92.00 69.62 3,419 (117) 205.60 273.77

26 June 1 Oct. 87.36 91.62 73.64 2,625 (69) 2,833 (97) 174.94 290.54
26 June 19 Oct. 87.36 91.62 73.64 3,199 (115) 155.77 325.68

zData obtained from field experiments conducted in 2007.
yMAXSOIL10 = mean maximum soil temperature 10 d after transplanting (DAT), log 10 transformed values used for calculation; RH20 = mean relative humidity 20 DAT;
MAXAIR20 = mean maximum air temperature 20 DAT; (�F – 32)/1.8 = �C.
xAccumulated GDD calculated using method M4 as defined in Table 2.
wStorage roots were graded according to USDA standards (USDA, 2005): US #1 grade = 2 to 3–1/2 inches (5.1–8.9 cm) diameter, 3 to 9 inches (7.6–22.9 cm) length,
maximum weight not more than 20 oz (567.0 g); canner = 1 to 2 inches (2.5–5.1 cm) diameter, 2 to 7 inches (5.1–7.8 cm) length; jumbo = larger vs. others, but marketable;
1 50-lb bushel/acre = 56.0426 kg�ha–1.
vPredicted US#1 yield calculated using M4, base temperature = 60 �F, ceiling temperature = 90 �F, and agrometeorological variables as defined in Table 4.
uCHS = Chase, LA; BTR = Baton Rouge, LA. Details of locations described in Table 1.
tValues enclosed in parentheses = days after transplanting.
sValues enclosed in parentheses = days to harvest.
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processes (Park et al., 2005). Results
from this work have practical implica-
tions for the sweetpotato harvest
scheduling in Louisiana. One direct
application of our work would be to
schedule test harvests using GDD =
2600 instead of using calendar days.
Based on 2007 planting dates, the
number of days required to reach
GDD = 2600 ranged from 69 to 91
d. Scheduling a test harvest and the
ability to forecast yield can help com-
mercial growers and crop consultants
to further fine tune decisions con-
cerning harvest dates based on a tar-
get yield level. For example, the
harvest can be scheduled based on
yield potential of fields (planting
dates) if a threat of extended severe
weather emerges during this period.
Seem et al. (2003) also proposed
using GDD as a method for ‘Beau-
regard’ to better compete with weeds
if it is planted during periods where
maximum GDD is accumulated rap-
idly. The GDD model can be incor-
porated into predictive models of
sweetpotato crop phenology. To our
knowledge, a well-defined phenolog-
ical model does not exist for the
species, and past reviews of sweet-
potato yield physiology (Kays, 1985;
Ravi and Indira, 1999) do not men-
tion the development or existence of
such models. Such models can open
areas for further investigation, includ-
ing the role of accumulated GDD in
scheduling herbicide application, fer-
tilizer application, irrigation, and pest
management.

Currently, some commercial
weather monitoring stations include
software that calculates GDD using
specific preprogrammed methods
(i.e., triangle, sine, and modifications
of these basic methods). Our results
indicate that the SINE method (60–
85) can be used with a very slight
reduction in model accuracy. This will
allow growers and crop consultants to
use such software without further
modification. This research repre-
sents a preliminary step toward help-
ing to account for field-level yield
variability in sweetpotato. Future
studies should be able to improve
the predictive performance of current
models through the addition of other
soil- and plant-related predictor vari-
ables. Rainfall-related variables were
excluded from the current modeling
experiments due to violation of nor-
mality assumptions. Even when all

agrometeorological variables were
included in DM mode, none of the
rainfall-related measurements were
included as predictor variables in the
best-performing models (data not
shown). Soil moisture and nutrient
measurements were available for
some locations for the current study,
but were excluded in the analysis
because this would have reduced the
size of the modeling database.

Conclusions
This research indicates the

potential for using GDD-based mod-
els to help predict sweetpotato har-
vest dates in Louisiana. Several
methods and combinations of B and
C showed better goodness-of-fit and
predictive accuracy when compared
with the standard method of calculat-
ing GDD. In addition to the con-
ventional methods of identifying
candidate GDD methods, we also
considered using adaptive algorithms
associated with DM methodology.
LR- and DM-based regression ap-
proaches identified similar candidate
models. Using accumulated GDD,
our results suggest that test harvests
can be done at about GDD = 2600
and harvesting can start shortly there-
after. Further calibration is necessary
to improve the predictive ability of
the current model. Future studies will
likely investigate the potential modu-
lating effect of moisture stress and
other management variables.
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