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A t m o s p h e r i c po l l u t an t s cause 

decreased yields, growth suppression 
and low product quality in both orna-
mental and vegetable crops, including 
petunias (23), begonias (45), snap-
dragons (1), onions (21), beans (70), 
cucumbers (53), radish (49), tomato 
(55) and several others (32). Fruit crops 
most widely injured are grapes (59) and 
citrus (69). Details of other sensitive 
plants have been discussed by Rich (57). 

Annual crop loss due to air pollut-
ants, in the United States, has been 
estimated at $500 million (30). This 
estimate is probably conservative since 
there are both obvious as well as latent 
forms of damage, and only the former 
would be reflected in the estimated crop 
loss value. Heggestad (31), for example, 
suggests that much of the plant damage 
resulting from air pollution is due to 
suppression of growth, which could be 
as much as 50% in certain crops. It has 
also been projected by Wood (71) that 
effective air pollution abatement is not 
likely for the next two decades. This is 
evidently supported by the recent relax-
ation, by the U.S. Environmental 
Protection Agency, of air pollution 
a b a t e m e n t s t a nda rds previously 
established for industries. Such a relax-
ation has, in turn, resulted from the 
current energy shortage, and allows 
industries to use, for example, fuels 
with high sulfur levels. 

In view of both current and antici-
pated heavy crop losses, there is the 
need for both long-term and short-term 
solutions in the protection of plants 
from air pollutant damage. The long-
term approach will take the form of 
breeding or selecting cultivars that are 
either resistant to, or significantly 
tolerant of, air pollutants. Meanwhile, 
air pollutant damage to plants can be 
minimized through the use of chemical 
agents and certain cultural practices. 

Air pollution injury to plants has 
been a subject of several reviews. In 
1961, Middleton (51) reviewed general 
aspects of plant damage. Rich (57) 
emphasized growth and protection 
aspects, while Heck (28) reviewed 
fac tors influencing damage. More 
recently, Dugger and Ting (19) reviewed 
physiological and biochemical aspects of 
air pollution damage. Rich (57) 
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reviewed some aspects of protection, 
particularly the early attempts with 
fungicides and related chemicals, as well 
as the use of certain inert surface-active 
materials. The present review will 
emphasize attempts to reduce injury by 
various means and agents and will cover 
broader groups of chemicals and also 
the edaphic, environmental and genetic 
aspects of protection. 

Chemical protection 
Fungicides. One of the earliest 

reports of chemical protection was that 
of Kendrick et al. (40) who demonstrat-
ed that plant injury caused by exposure 
of plants to ozonated gasoline or 
hexene-1 can be prevented with sprays 
or dusts of zinc ethylene bis dithiocarb-
amate (zineb), manganese ethylene bis 
dithiocarbamate (maneb), tetramethy-
lthiuram disulfide (thiram), or ferric 
dimethyl dithiocarbamate (ferbam). In 
the same study, such fungicides as Bord-
eaux m i x t u r e , 2 ,3 -d ich lo ro- l ,4 -
naphthoquinone (dichlone), or tetra-
chloro-p-benzoquinone (chloranil) did 
not effectively protect bean plants. In a 
subsequent report (38) covering field 
tests as well as laboratory experiments, 
the degree of protection was found to 
be directly related to the concentration 
of chemicals. Action of the chemical 
protectant was local and not systemic, 
suggesting the deactivation of oxidants 
at the leaf surface. Low concentrations 
of some recently developed fungicides 
may be even more effective than those 
used earlier. Seem et al. (61) have found 
that the systemic fungicide, a-2,4-dich-
lorophenyl-aphenyl-5-pyrimidinemeth-
anol (triarimol) suppressed ozone injury 
to 11-day old greenhouse- and growth 
chamber-grown bean plants. Foliar 
sprays at a concentration of 50 mg/liter 
resulted in a 4-fold reduction of injury. 
Protection was also obtained with as 
low as 2 /ig/g soil. Two other systemic 
fungicides with commercial promise for 
chemical control of pollution damage 
are thiophanate ethyl (l,2-bis(3-ethoxy-
carbonyl-2-thioureido) benzene, and 
thiophanate methyl (l,2-bis(3-methoxy-
carbonyl-2-thioureido) benzene. Nearly 
complete protection from ozone injury 
to bean plants was achieved with 200 fig 
thiophanate ethyl per gram soil (62). 
Soil application of thiophanate methyl 
was not consistently effective, while 
foliar applications of both fungicides at 
the rate of 500 mg/liter resulted in 
significant reduction of injury. 

Antioxidants. These are a hetero-
geneous group of chemicals which have 
been found to prevent oxidant damage 
to plants, principally by the inhibition 
of oxidative processes. These include 
simple reducing agents, commercial anti-
oxidants, and specific antiozonants used 
in the rubber industry. Freebairn and 
Taylor (26) used ascorbic acid to 
protect a diversity of crops including 
beans, celery, romaine lettuce, petunias 
and citrus from leaf injury caused by 
polluted air of the Los Angeles area. 
Most species were partially protected, 
while a substantial protection in 
petunias was associated with increase in 
the number and weight of leaves. 
Oxidant damaje to bean plants sprayed 
with 0.01 M potassium ascorbate was 
about 40% as great as damage to control 
plants. A reaction of ascorbic acid with 
the oxidants, at the leaf surface, was 
discounted since single applications of 
large amounts of ascorbic acid were not 
enough to prevent injury soon after 
application. It was later shown that 
both the potassium and calcium salts of 
ascorbic acid, when fed through the 
roots, protected bean plants from ozone 
injury (25). On purely experimental 
bases, protection of cucumber seedlings 
from injury expected at acute levels was 
found with a wide variety of chemicals, 
including hydrazine, indole, trypto-
phane and mescaline by Siegel (65). 
Protection was evident in increased 
survival of seedling populations and in 
reduced inhibition of hypocotyl section 
elongation. Ascorbic acid failed to 
provide appreciable protection in 
cucumber (65), but provided significant 
protection in beans (25) and petunias 
(26). The low effectiveness of ascorbic 
acid was attributed to the lack of 
specific effect on growth alterations, 
and also to possible autoxidation to 
dehydroascorbic acid (65). These 
reasons have been largely negated by the 
work with beans (25). The apparent 
conflict in these responses may be 
related to the differences in effective 
uptake of ascorbic acid supplied to the 
roots. It is, however, interesting to note 
that Dass and Weaver (17) also found 
ascorbic acid to be less effective than 
nickel-N-dibutyl dithiocarbamate in pro-
tec t ing bean plants. Under field 
conditions, manganous 1, 2-naphtho-
quinone-2-oxime protected tomato 
foliage from damage apparently caused 
by excessive atmospheric ozone (58). 
The similar cobaltous and manganous 
chelates of 8-quinolinol were also effect-
ive antiozonants. These chemicals were 
applied to cloth (at the rate of 405 
mg/m2) which was used in the same 
manner as in shade-grown tobacco. 
Compounds used as antiozonants in tlie 
rubber industry, for example the 
dialkyl-p-phenylenediamines, proved to 
be even more effective. 

Growth regulators. Some growth 
regulators were studied in relation to air 
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pollutant oxidants as early as 1954 (35). 
Such studies, however, were primarily 
concerned with the effects of pollutants 
on the activity of indoleacetic acid using 
in vitro biological systems (52), Avena 
coleoptile bioassays (35) and short-term 
seedling experiments (65). Under in 
vitro conditions, ozone inactivated 
indoleacetic acid, but it was not known 
if such an inactivation would be of 
significance in mature intact plants. In 
radish plants, Adedipe and Ormrod (3) 
found that ozone at 25 pphm for 4 hr 
had no effect on leaf weights of plants 
pre-treated with 30 mg/liter of 6-benyla-
mine purine (BA), gibberellic acid (GA) 
or indoleacetic acid (IAA), but decreas-
ed leaf weight of control plants and of 
plants treated with (2-chloroethyl)-
phosphonic acid (ethephon). In terms 
of radish root weight, however, ozone 
had no effect only in plants treated with 
BA. BA was thus found to be the most 
active of the growth regulators tested in 
the protection of plants from oxidant 
damage, both in terms of ozone-induced 
growth suppression and decrease in 
chlorophyll content of leaf. Lee (44) 
had earlier obtained increased ozone 
susceptibility with 6-furfurylamino-
purine (kinetin), a cytokinin similar to 
BA. The apparent conflict could be due 
to differences in activity of specific 
cytokinins, or to the use of detached 
leaves (44), or to differential species 
response, or indeed, a combination of 
these factors. In bean plants, abscisic 
acid treatment of the primary leaves 
reduced ozone injury (24). Cathey and 
Heggestad have shown the protection of 
several lines of petunia from ozone 
damage (12) and of poinsettia plants 
from ozone and sulfur dioxide damage 
(13), with the use of growth retarding 
chemicals. Petunia plants which had 
been treated with foliar sprays of 
succinic acid-2,2-dimethylhydrazide 
(SADH) and 2 ,4-dichlorobenzyl 
t r ib u t y l p h o s p h o n i u m ch lo r ide 
(phosfon) exhibited reduced injury in 
direct relation to chemical dosage (12). 
Addition of ascorbic acid and a wax 
coating (Folicote) to the spray solution 
increased the protection afforded by 
SADH. In poinsettia plants, a-cyclopro-
pyl-a-(4-methoxyphenyl)-5-pyrimidine 
methanol (ancymidol) and (2-chloro-
e thy l ) t r imethylammonium chloride 
(chlormequat) reduced visible injury 
induced by ozone and sulfur dioxide 
(13). 

Edaphic and environmental factors 
Mineral nutrition. The protection 

aspects of mineral nutrients are complex 
and varied. Generally, mineral nutrient 
levels that promote growth have been 
reported to also increase pollutant 
injury to crops. However, specific 
responses are dependent on the specific 
element and species under considera-
tion. 

One of the earliest reports on the 

influence of mineral nutrition is that of 
Brennan et al. (9) that the tip and 
margin burns characteristic of fluoride 
toxicity was minimum at deficient and 
at excessive levels of N. In mangels (10) 
the severity of injury resulting from 
ozonated hexene was significantly 
increased as the N level was increased. 
Spinach plants fumigated with perox-
ides derived from olefins showed 5-7 
times as much damage when grown with 
abundant N supply as when grown 
under low or deficient N status (39). 
Growth suppression by ozone treatment 
of radish plants was also more severe at 
high than at low N levels (54). 

Reports for P are not as straight-
forward as for N. In tomato, fluoride 
injury (9) and ozone toxicity (46) 
generally increased with increase in P 
supply. While P level had no significant 
effect on ozone-induced growth 
suppression in radish, high level of P 
accentuated phytotoxicity (54). In 
mangels and spinach (10) there were 
significant interactions of P with N and 
with K. Additions of P without K, or K 
without P, at the medium and high N 
levels produced poor top growth that 
was resistant to oxidant injury. When 
both P and K were added, however, top 
growth and severity of injury were 
significantly increased. 

Both deficient and excessive amounts 
of Ca prevented flourine injury in 
tomato (9). When Ca was added to the 
substrate in concentrations above 40 
ppm, its tendency to precipitate 
fluorine in the form of insoluble 
compounds within or around the roots 
further reduced the possibility of injury 
to foliage. This action of Ca appears to 
be a physico-chemical one, as was also 
obtained with lime foliar dusts and 
sprays in the protection of gladiolus 
from fluoride scorch (6), and of peaches 
from soft suture (7). 

In tomato plants (47) increased 
sulfur level was associated with a greater 
degree of SO2 susceptibility. In bean 
plants, however, Adedipe et al. (2) 
reported markedly lower ozone phyto-
toxicity at a high level (32 mg/liter) of 
sulfur than at the low level of 1.3 
mg/liter. Increased SO2 susceptibility at 
high S rates was apparently a result of 
cumulative toxicity since increased 
injury parallelled elevated foliar S 
absorption from both the nutrient 
solution and the SO2 atmosphere. The 
protective action of high S against 
ozone injury, on the other hand, may 
have resulted from elevated amounts of 
sulfhydryl groups in the plant tissues, 
since several chemicals containing 
sulfhydryl groups had earlier been used 
as protective sprays (22). 

Soil-Plant-Water Relations. 
Generally, plants grown under water 
stress conditions are tolerant of atmos-
pheric pollutants, indicating that an 
increase in soil water, resulting in an 
increase in plant water status, also 

increases air pollutant injury. Early 
studies were carried out with tobacco 
(67, 69). According to Seidman et al. 
(63), injury to petunia and pinto bean 
plants from ozone and irradiated auto 
exhaust could be substantially reduced 
by withholding water from plants prior 
to exposure. In tomato (41), plants 
subjected to water stress resulting in a 
low relative leaf turgidity of 80% prior 
to ozone fumigation, were considerably 
protected from ozone injury. The 
effects were mainly restricted to soil-
plant-water conditions prior to and 
during ozone treatment. In the study 
t h e r e was no significant growth 
reduction due to water stress. Ozone 
effects were therefore those related to 
tissue water contents per se, independ-
ent of growth. In related greenhouse 
studies by Stolzy et al. (66) on the 
relation of soil-oxygen diffusion rates to 
the susceptibility of tomato plants to 
ozone, low diffusion rates made the 
plants more resistant, and this effect 
was most noticeable when plant vigor 
was obviously impaired. Under field 
conditions, therefore, it is expected that 
crop loss resulting from air pollutant 
injury could be considerably reduced, if 
not prevented, by following a less 
frequent irrigation schedule (but not to 
the point of adversely affecting crop 
yield), or by temporarily withholding 
water supply during air pollution 
episodes (50). This has been supported 
by Rich (57) who observed that 1963 
rainfall, averaging 2-5 inches below 
normal in the growing season, protected 
the Connecticut tobacco crop from 
oxidant injury. 

Environmental factors. Air pollutant 
injury to plants is modified by several 
e n v i r o n m e n t a l factors, prominent 
among which are temperature, light and 
humidity (28, 29, 57). Generally, 
temperatures that promote good growth 
also predispose plants to greater damage 
(29, 37, 67). Kendrick et al. (39) 
obtained reduced sensitivity of spinach 
and lettuce at low temperatures. 
Ormrod et al. (54) reported greater 
ozone suppression of radish dry weight 
at 20/15°C (day/night) than at 30/25°. 
In a subsequent study (5) with radish in 
which the temperature used had no 
overall effect on plant growth, there was 
increased ozone sensitivity in terms of 
growth suppression at the lower growth 
temperature. Greatest susceptibility in 
this study was therefore not related to 
optimum temperature for growth in 
contrast to the response of many other 
species (16). Plants exposed to medium 
or high light intensity are also generally 
more sensitive to ozone (37). Air 
pollutant injury is also usually more 
severe at high than at low relative 
humidities (29). Tor example, foliar 
necrosis due to fluoride accumulation in 
gladiolus was more intense and occurred 
sooner in plants exposed at 80% than at 
50% or 65% relative humidity (48), 
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while plants at 30% were 3 times more 
resistant to SO2 than those at 100% 
(64). 

Post fumigation cultural conditions 
have not been extensively studied, and 
are generally considered to have little or 
no effect on the sensitivity of plants to 
specific phytotoxicants (28). More 
studies are indicating post-exposure 
effects of environmental factors. For 
example, according to Taylor et al. (68) 
a short exposure of pinto bean plants to 
PAN required a 2-4 hr 'postlight' period 
for injury development. Adedipe and 
Ormrod (5) have demonstrated that 
both the pre- and the postexposure 
t e m p e r a t u r e conditions determine 
overall ozone injury in 'Cherry Belle' 
radish plants. 

Genetic tolerance 
Knowledge of relative tolerance of 

horticultural plant species and cultivars 
to air pollutants is necessary for the 
recommendation of specific plant types 
for areas with high frequency of 
episodal concentrations of pollutants. 
Such information is also useful for the 
selection of genetic lines or accessions 
for breeding programs. 

S e v e r a l s t u d i e s of species 
susceptibility and tolerance to ozone 
have been conducted (42). Symptoms 
vary with specific pollutants and with 
species (36). Of the vegetable crops, 
onions and tomatoes are the most 
widely studied. Tolerant cultivars 
include 'Downing Yellow Globe' and 
'Autumn Spice' in onions (53), 'Polaris 
135' cucumber and 'Superior' potato. In 
tomatoes it has been shown that there 
are wide differences in species 
sensitivity. The greatest sensitivity to 
ozone was observed in the accession 
Lycopersicon pimpinellifolium while 
the greatest level of tolerance was in L. 
esculentum (27). In cultivar studies, 
both Clayberg (14) and Reinert et al. 
(55) showed 'Heinz 1439' to be among 
the least sensitive to ozone; 'New 
Yorker' (14) and 'VF 145 B' were quite 
t o l e r a n t . ' G r e a t Lakes ' and 
'Black-seeded Simpson' lettuce and 
'Icicle' lettuce were the least sensitive 
(56). In field plantings, sweet corn 
hyb r id s were reported to show 
di f ferent ia l injury resulting from 
oxidant pollutants (11). 

Of the ornamental plants, emphasis 
has been on bedding plants. In begonias, 
Leone and Brennan (45) found 'Red 
Comet' to be only moderately injured, 
while 'White Comet' was severely 
injured by ozone. Similarly, Adedipe et 
al. (1) reported 'Scarletta' to be more 
tolerant than 'White Taudenschon' to 
ozone and sulfur dioxide. It therefore 
appears that the red and pink begonias 
are generally more tolerant of pollutants 
than the white cultivars. Tolerant 
petunias include 'Canadian All Double 

Mixture' (1), and 'Capri' (12, 23). Many 
species of turfgrasses show differential 
susceptibility. Bentgrasses and annual 
bluegrass were most sensitive, while 
bermudagrass and zoysia were most 
resistant to ozone and sulfur dioxide 
(8). In the bentgrasses, 'Penncross' was 
most highly sensitive to ozone, but 
'Kingstown Velvet' and 'Highland 
Colonial' showed significantly less 
inj ury. 

Modes of genetic and acquired 
tolerances 

In air pollutant injury, many aspects 
of plant metabolism may be impaired. 
While pollutant injury has been ascribed 
t o s e v e r a l such phys io log ica l 
manifestations (19, 28, 57) the role of 
stomata appears to be important. That 
stomata have to be open for injury to 
occur has been demonstrated in a 
n u m b e r of species, with several 
pollutants, particularly ozone (20, 33, 
34, 42, 43) and sulfur dioxide (15), 
although the role of stomata in the 
control of PAN injury has been 
discounted (18). 

Protection from air pollutant injury 
due to inherent characteristics of certain 
plant species and cultivars, and due to 
certain chemicals, is therefore largely a 
result of stomatal closure. The action of 
chemicals can be physical by way of 
thin films of solutions, or may be 
physiologically effected through the 
regulation of guard cell turgidity. In 
on ion Engle and Gabelman (20) 
repor ted that the mechanism of 
resistance to ozone injury is that of 
stomatal closure. The guard cells of 
tolerant cultivars are so sensitive that 
they close and protect the plants, while 
they remain open in susceptible 
cultivars. Plants that have been made to 
acquire relative tolerance show similar 
stomatal behavior. Adedipe and Ormrod 
(4) used prefumigation darkness, 
s o i l - p l a n t - w a t e r s t r e s s , and 
pheny l mercuric acetate (PMA) to 
protect tomato plants from ozone 
injury. Leaves of plants so treated 
showed reduced injury (Fig. 1) which 
was accompanied by considerable 
reductions in stomatal aperture. Similar 
results were obtained in bean plants 
pretreated with abscisic acid (24). While 
it is possible that these environmental 
and chemical factors prevented injury 
by different physiological mechanisms, 
these studies suggest stomatal closure, 
or more appropriately stomatal width 
reduction, as a significant mechanism of 
protection. 

The protection aspect of plants from 
air pollution injury, overall, is best 
achieved by the development of 
cultivars fairly tolerant of, or resistant 
to pollutants, through systematic 
breeding programs. Breeding programs 
such as that of Engle and Gabelman 
(20) are a case in point. However, in the 

Gentile et al. study of tomato (27), the 
disease resistant accession Lycopersicon 
pimpinelli folium had the greatest 
sensitivity to ozone; in contrast 
' M a n a p a l ' combines b o t h leaf 
mold-resistance with ozone tolerance. 

In regard to short-term solutions, 
many of the atmospheric environmental 
factors do not lend themselves to 
manipulation. Hence, not much can be 
done with them to protect plants from 
air pollution damage in the field. 
However, knowledge of the activities of 
some of these factors is crucial in the 
manipulation or utilization of other 
factors of protection. In greenhouse 
crop production, environmental factors 
bear more relevance to the protection 
aspect since such factors as temperature, 
light, and humidity may be controlled 
to minimize air pollution damage. But 
even in this case, the simple provision of 
filters provides ample protection for 
greenhouse-grown plants. The use of 
chemicals is feasible and should be 
fu r the r explored. Application of 
chemicals such as antioxidants and 
vitamins is economically infeasible and 
has therefore not been commercially 
adopted. This stems not only from the 
high cost of the chemicals, but also 
from the need for repeated applications 
for effectiveness. However, the use of 
certain fungicides and growth regulating 
chemicals which are already routinely 
utilized in the horticultural industry is 
practicable since they confer multiple 
bene f i t s . More studies of such 
agricultural chemicals will be of benefit 
in t e rms of the protection of 
horticultural plants from air pollution 
damage. 
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