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Abstract. Developing cultivars that are resistant to multiple biotic stresses is an impor-
tant objective in raspberry plant breeding. Diseases such as Raspberry bushy dwarf vi-
rus and Phytophthora root rot have long been a high priority for raspberry breeding
programs, whereas other pests, such as spotted wing Drosophila and the root lesion
nematode, have been considered more recently. Breeding for improved resistance to
these stresses has relied primarily on conventional breeding methods. However, rapid
technological progress and increased access and affordability of genomic and phe-
nomic methodologies may accelerate breeding and improve selection efficiency for ge-
netic resistance to pests and pathogens. Such advancements are understudied for
application in raspberry, but are emerging as a significant research interest. We re-
view the current state of plant breeding research for the most significant diseases and
pests affecting raspberry production in the Pacific Northwest of North America. In
addition, we discuss new and relevant plant breeding methodologies that could con-
tribute to future breeding objectives.

The Pacific Northwest (PNW) of North
America encompasses the states of Washington,
Oregon, Idaho, USA, and the Canadian prov-
ince of British Columbia, where climate is

heavily influenced by proximity to the Pacific
Ocean. The PNW has a large diversity of crops,
with more than 300 different agricultural com-
modities produced in Washington, USA alone

(Washington State Department of Agriculture
n.d.). The temperate climate and well-drained
sandy loam soils of the PNW region make it
well suited for caneberry production, which in-
cludes red raspberry (Rubus idaeus L.), black
raspberry (R. occidentalis L.), and blackberry
(Rubus spp.). As a result, Oregon andWashington
are consistently ranked among the states with
the highest raspberry yields and harvested area
in the United States (Fig. 1). Although much
of the fresh-market production of caneberries
in North America occurs in California, USA,
and Mexico, most of the processed market
production of caneberries in the United States
occurs in the PNW. Washington ranks first in
the nation for processed red raspberry produc-
tion, whereas Oregon is among the top five
(Menzies 1999; Oregon Raspberry and Black-
berry Commission n.d.). Oregon leads the
United States in black raspberry production
(Oregon Raspberry and Blackberry Commis-
sion n.d.).

The longevity of red raspberry plantings
in this region is typically 6 to 7 years, but can
be more than 12 years depending on the culti-
var, cultural practices, and abiotic and biotic
stresses (DeVetter et al. 2018; Hummer and
Hall 2013). Of these, Phytophthora root rot
(causal agent: Phytophthora rubi), the root le-
sion nematode (Pratylenchus penetrans), and
Raspberry bushy dwarf virus (RBDV) are the
most significant diseases reducing the life
span of red raspberries throughout the region
(Quito-Avila et al. 2014; Rudolph et al.
2019a; Weiland et al. 2018, 2024). Black
raspberry is susceptible to common root rot
pathogens and plant viruses, including Verti-
cillium wilt (causal agent: Verticillium dah-
liae), RBDV, and Strawberry necrotic shock
virus, and tends to last only 3 or 4 years be-
fore being removed as a result of reduced
vigor, yield, and fruit quality caused by dis-
eases (Halgren et al. 2007). Raspberry typi-
cally matures and becomes economically
productive by the third year after planting, and
growers want their plantings to be as long-
lived as possible to reduce replanting costs,
which were $5597/acre for red raspberry in
2015 (Galinato and DeVetter 2016). Between
economic and environmental pressures, PNW
breeders strive to release elite raspberry culti-
vars that withstand significant disease pressures
such as the ones mentioned here.

Within the past few decades there has
been significant progress in the development
and accessibility of genomic and phenomic
technologies for agriculture. These new tools
can increase the selection efficiency for de-
veloping and identifying improved cultivars.
Although these methods can be applied to
most crops, they are particularly valuable for
breeding programs focused on woody peren-
nial crops with long cultivar development
cycles such as raspberries. These methods
present the opportunity to achieve the goal of
improving biotic stress resistance in raspber-
ries and are currently being evaluated by pro-
grams around the world. Here, prevalent
pests and diseases important to PNW breed-
ing programs are discussed, as well as current
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genetic and phenomic efforts to understand
more fully and breed for those stresses.

Raspberry Breeding in the PNW

Raspberries are increasingly popular with
consumers because they contain nutraceutical
compounds with anticarcinogenic and anti-
inflammatory effects (Jean-Gilles et al. 2012;
Mace et al. 2014; Montrose et al. 2011;
Rodrigo et al. 2006; Shi et al. 2016, 2017). The
steady increase in global production and acre-
age planted in recent decades reflects increas-
ing consumer demand (Fig. 2). In 2021, the
top five raspberry-producing countries were
Russia, Mexico, Serbia, Poland, and the
United States (Food and Agriculture Orga-
nization of the United Nations n.d.) (Table 1).
With increasing consumer demand, there is
greater pressure to develop cultivars with
higher fruit quality and yields, resistance to
common pests and pathogens, and improved
machine harvestability to offset challenges re-
lated to the cost and availability of labor.

Caneberry breeding in the PNW has been
led by the US Department of Agriculture
(USDA)–Agricultural Research Service (ARS)
Horticultural Crops Production and Genetic
Improvement Research Unit (HCPGIRU; for-
merly, the USDA-ARS Horticultural Crops
Research Unit) (Corvallis, OR, USA), the
Washington State University (WSU) Small
Fruit Breeding program (Puyallup, WA,
USA), and British Columbia Berry Cultivar
Development Inc. (BCBCDI) (Abbotsford,
BC, Canada). Historically, Agriculture and
Agri-Foods Canada (AAFC) partnered with Pa-
cific Agri-Food Research Centre (PARC) for
raspberry breeding, but now collaborates with
the BCBCDI. The USDA-ARS program in
Oregon was started in 1928 and is one of the
oldest blackberry and raspberry breeding

programs in the United States (Finn and Clark
2012). The WSU program was started soon af-
ter in 1929, followed by the AAFC-PARC pro-
gram in British Columbia, Canada, in the 1950s
(Jennings 2018; Moore and Hoashi-Erhardt
2016). Since their inception, these programs
have worked collaboratively to meet the
needs of PNW growers. In the private sector,
Northwest Plant Co./Pacific Berries, LLC
(Ferndale, WA, USA), and The New Zealand
Institute for Plant and Food Research Ltd.
(Mt. Albert, Auckland, NZ) have coopera-
tively developed and released raspberry cul-
tivars, as has Driscoll’s (Watsonville, CA,
USA).

Today, the Corvallis USDA-ARS program
(Corvallis, OR, USA) prioritizes blackberry
breeding but continues to work on red and black
raspberries. The WSU and BCBCDI programs
primarily develop elite red raspberry cultivars.

The caneberry focus for each program matches
regional acreage, with blackberry and black
raspberry predominantly grown in Oregon, and
red raspberry prevalent in Washington, USA
and British Columbia, Canada (Statistics
Canada 2023; US Department of Agriculture–
Economic Research Service 2023).

Rubus genetic resources are maintained at
the USDA-ARS National Clonal Germplasm
Repository (NCGR; Corvallis, OR, USA) and
were recently described by Bushakra et al.
(2020). The NCGR currently maintains more
than 2000 Rubus accessions from 56 countries.
The mission of the NCGR is to acquire and
maintain genetic resources, evaluate and charac-
terize them phenotypically and genotypically,
and distribute them for research worldwide.
Information about these resources is publicly
available through the Germplasm Resources In-
formation Network database. The NCGR is

Fig. 1. (A) Red raspberry (Rubus idaeus) yields in the United States for reporting states and British
Columbia, Canada. (B) Black raspberry (Rubus occidentalis) yields in the United States for report-
ing states. (C) Total harvested raspberry acreage in the United States for reporting states. Based on
data from the US Department of Agriculture Economic Research Service (2023), Statistics Canada
(2023), and the US Department of Agriculture National Agricultural Statistics Service (2024).

Received for publication 12 Mar 2025. Accepted
for publication 30 Apr 2025.
Published online 27 Jun 2025.
This work was funded in part by the US Depart-
ment of Agriculture (USDA) National Institute
of Food and Agriculture (Hatch project no.
7003737), the Northwest Center for Small Fruits
Research Center (project no. 2072-22000-046-
006-G), and the USDA–Agricultural Research
Service (project nos. 2072-21000-060-00D and
2072-22000-046-00D).
Much of the research in caneberries in the Pa-
cific Northwest occurs on the ancestral home-
lands of indigenous peoples who were forcibly
removed through the enactment of various trea-
ties. US land grant universities and colleges that
conduct and support this research exist today be-
cause of the Morrill Act of 1862, which autho-
rized the sales of expropriated tribal lands to
fund the establishment of these institutions.
Mention of tradenames or commercial products
in this article is solely for the purpose of provid-
ing scientific information and does not reflect
recommendation or endorsement by the US De-
partment of Agriculture.
M.A.H. is the corresponding author. E-mail: mi-
chael.hardigan@usda.gov.
This is an open access article distributed under
the CC BY-NC license (https://creativecommons.
org/licenses/by-nc/4.0/).

HORTSCIENCE VOL. 60(7) JULY 2025 1181

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-14 via O
pen Access. This is an open access article distributed under the C

C
 BY-N

C
license (https://creativecom

m
ons.org/licenses/by-nc/4.0/). https://creativecom

m
ons.org/licenses/by-nc/4.0/

mailto:michael.hardigan@usda.gov
mailto:michael.hardigan@usda.gov
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


vital to caneberry breeders who work closely
with the Rubus curator and NCGR team on all
aspects of acquisition, evaluation, research, and
breeding. All NCGR accessions have a unique
plant introduction (PI) number that is used to
track their identities from distribution to down-
stream use in published research and breeding.

These programs have produced important
public cultivars regionally and globally. Red
raspberry ‘Meeker’ (PI 553384) was released
in 1967 from the WSU program and accounts
for a small but significant amount of estab-
lished acreage of red raspberry for the proc-
essed market (Moore and Daubeny 1993).
Red raspberry ‘Tulameen’ (PI 618441) out of
the AAFC-PARC program set the current

standard for fresh-market red raspberry fruit
quality in the early 1990s (Daubeny and
Anderson 1991; Daubeny and Kempler 2003).
Some of the PNW red raspberry cultivars have
become important globally and are widely
grown, such as ‘Willamette’ (PI 553362) in
Serbia (Leposavi�c et al. 2013). Red raspberry
floricane cultivars for processing continue to
dominate the PNW industry, where growers
use a combination of public and private culti-
vars such as ‘Cascade Harvest’ and ‘Cascade
Premier’ from WSU, ‘Chemainus’ from the
BCBCDI, ‘Wakefield’ and ‘Wakehaven’ from
Northwest Plant Co., ‘Kulshan’ from Driscoll’s,
and other proprietary cultivars (nursery sales
data from Northwest Berry Foundation, un-
published information; Moore et al. 2015).
Many growers in Oregon, USA, continue to
plant historical cultivars such as red raspberry
‘Meeker’ and black raspberry ‘Munger’, which
is an example of the challenges breeders face
in developing and promoting the adoption of
new cultivars with high yield, machine-har-
vested fruit quality, long-term plant health, and
resistance to abiotic and biotic stresses.

Genetic Diversity of Caneberries

Caneberry breeding for commercial pro-
duction spans the past 200 years (Hall 1990).
Rubus is an incredibly diverse genus, with
1471 accepted species to date (Plants of the
World Online 2023). Of these species, only a

few are cultivated for commercial production.
Most red raspberry cultivars are diploids
(2n 5 2x 5 14) with ancestry that is derived
from R. idaeus and its close relative Rubus
strigosus, with occasional hybridization to
other diploid Rubus subgenus Idaeobatus spe-
cies (Hummer and Hall 2013). Black rasp-
berry cultivars are also mostly diploid (2n 5
2x 5 14) and are predominantly derived from
R. occidentalis, with occasional use of species
hybrids to improve thornlessness, disease re-
sistance, and fruit size.

The taxonomic classification of Rubus
species is challenging because of apomixis
and other nuclear events. Random chromo-
some doubling, parthenogenesis, meiotic dis-
turbances, or unreduced gametes contribute
to ploidy variation (including within species)
and species hybridization, making species
identification and organization difficult (Hall
1990; Thompson 1997). Most domesticated
forms of Rubus are monoecious, although
there are dioecious species, including several
wild progenitors of domesticated forms (Crane
and Lawrence 1931). Dioecy is strongly se-
lected against by breeders, resulting in cultivars
that are hermaphroditic and readily self-fertilize,
which aids drupelet development and fruit set.
Numerous cultivars and species are capable of
self-fertilization, but some demonstrate in-
breeding depression in early generations of
progeny, which is a common observation in
heterozygous outcrossing species (Daubeny
1971; Fejer and Spangelo 1974). Because of
their heterozygous genomes, caneberries are
clonally propagated to ensure true-to-type ex-
pression of selected plant phenotypes for agri-
cultural production.

The tremendous diversity observed in Ru-
bus is both useful and challenging to plant
breeders working to improve existing cane-
berry cultivars and introduce novel traits.
Wild accessions and heirloom cultivars can
be excellent sources of pest and disease resis-
tance or tolerance. However, eliminating the
undesirable characteristics found in these
germplasm, including dense prickles, non-
erect growth habit, and soft or crumbly
fruit, requires years of effort, underscoring
the need for genomic breeding tools. Only a
handful of cultivars are commonly found in
the pedigrees of existing red raspberries.
Graham and Jennings (2009) described ‘Lloyd
George’ (PI 643942), ‘Pynes Royal’, ‘Preussen’
(PI 553525), ‘Cuthbert’ (PI 553363), and
‘Newburgh’ (PI 553369) as being the five par-
ent cultivars that are commonly found in the
pedigree of modern cultivars. Hummer and
Hall (2013) found that eight cultivars listed in
Hedrick’s Small Fruits of New York (Hedrick
1925) were present in more than 75% of mod-
ern cultivars. These eight cultivars were
‘Lloyd George’, ‘Latham’ (PI 553564), ‘Cuth-
bert’, ‘Newman’ (PI 553448), ‘Viking’ (PI
553368), ‘Ranere’ (PI 553366), ‘June’ (PI
553561), and ‘Herbert’. Although there are
some cultivars consistently reported between
studies as prominent parents, the differences in
the studies are likely the result of a focus on
adaptation for specific geographic regions,
which appears to be further supported by the

Fig. 2. (A) Global red and black raspberry (Rubus idaeus and Rubus occidentalis) area harvested from
1961 to 2021. (B) Global raspberry production from 1961 to 2021. (C) Global raspberry yields
from 1961 to 2021. Based on data from the Food and Agriculture Organization of the United
Nations (n.d.).

Table 1. Top 10 countries with the highest pro-
duction, rounded to nearest whole ton of
raspberry in 2021.

Country Production (t)
Russian Federation 197,700
Mexico 165,677
Serbia 110,589
Poland 103,900
United States 81,150
Spain 48,830
Ukraine 36,290
Portugal 27,950
Bosnia and Herzegovina 16,833
Chile 15,934

Based on data from the Food and Agriculture
Organization of the United Nations (n.d.).
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assessment conducted by Dale et al. (1993) on
the genetic contributions in cultivars by found-
ing clones. Despite their narrow list of founders,
phenotypic diversity within PNW red raspberry
breeding populations remains high and is sup-
ported by continuous introduction of alleles
from global germplasm.

Black raspberry development for commer-
cialization has been hampered by numerous
undesirable characteristics present in currently
available material, such as susceptibility to vi-
ral and fungal diseases, small fruit size, and
spiny canes (Hummer and Hall 2013; Jennings
1988). Improving such traits has proved diffi-
cult because many of the modern black rasp-
berry cultivars have been found to be almost
indistinguishable morphologically and geneti-
cally (Dossett et al. 2012; Ourecky 1975;
Weber 2003). Commercial black raspberry
production is concentrated primarily in
Oregon in the United States and in South Korea,
which has contributed to the slow turnover
of cultivars (Graham and Jennings 2009;
Kempler and Hall 2013). Black raspberries
‘Munger’ (PI 553740) and ‘Jewel’ (PI 553742)
are the main cultivars grown, both of which
were released several decades ago (Ourecky
and Slate 1973; Weber 2013). In the PNW,
production is focused mainly on machine-
harvested berries for processing into anthocyanin-
rich pur�ees and food products, and breeding
efforts are focused correspondingly on im-
proving plant durability and disease resistance
or tolerance over fresh-market eating quality.

Historically, the diversity of Rubus spe-
cies has contributed to numerous traits that
have become important for the industry, such
as the absence of thorns or spines, plant ar-
chitecture (erect, semierect, trailing), chilling
requirement, primocane fruiting habit, fruit
size, fruit firmness, and shelf life. Hall and
Kempler (2011) described numerous exam-
ples of raspberry breeding programs world-
wide using noncommercially cultivated species
such as Rubus arcticus, R. cockburnianus, R.
crataegifolius, R. odoratus, R. spectabilis, R.
pileatus, R. niveus, R. innominatus var.

kuntzeanus, R. biflorus, R. coreanus, R. parvi-
florus, R. parvifolius, R. idaeus, R. strigosus,
R. glaucus, R. trivalis, and R. lasiostylus for
various fruiting qualities, abiotic and biotic
stress resistance, and agronomic characteristics.
A still wider set of species contribute to the
crop hybrid complex that comprises the mod-
ern pool of blackberry cultivars. These species
have been used to integrate desirable traits into
other caneberry types, such as the hybrid culti-
vars Logan and Boysen, which are derived
from combining trailing blackberry species
with R. idaeus and R. strigosus, and supported
important niches in the processed-fruit market
(Hall et al. 2005). These species as well as un-
derutilized species contained in US gene banks
can be used to diversify the current germplasm
in PNW and global breeding programs.

Several abiotic and biotic stressors are im-
portant in raspberry production, and develop-
ing resistant or tolerant cultivars is a significant
goal of Rubus breeding programs today. Root
rot and RBDV resistance are listed consistently
as primary objectives for European and North
American caneberry breeders (Finn et al. 2008;
Weber 2013). In addition, resistance to potato
leaf hopper (Empoasca fabae) and aphids (Am-
phorophora idaei and Amphorophora agathon-
ica), which transmit the mosaic virus complex,
are biotic resistance traits of interest. Although
“resistance” appears frequently as a breeding
objective in publications, it should be noted
that “tolerance” can also be beneficial for plant
longevity and performance. Pag�an and Garc�ıa-
Arenal (2018) describe resistance as “the host’s
ability to limit pathogen multiplication” and
tolerance as “the host’s ability to reduce the ef-
fect of infection on its fitness regardless of the
level of pathogen multiplication.” The goals of
individual plant breeders inform their decisions
to pursue incorporating and selecting genetics
for resistance or tolerance. Given the availabil-
ity of germplasm-harboring alleles for resis-
tance and tolerance, both should be incorporated
to support a more stable plant pest response and
delay the emergence of resistance-breaking pest
populations. This may not be possible in the

case of pests or pathogens for which breeders
have not identified genetic resistance in the
germplasm, such as spotted-wing Drosophila
(SWD; Drosophila suzukii) or V. dahliae. As
the evolutionary arms race between pathogens
and plant hosts continues, it is of little surprise
that biotic stress resistance or tolerance remains
a central focus of PNW caneberry breeding
programs.

Plant Diseases of Caneberries in the
PNW

Raspberry producers in the PNW face a
variety of biotic stress challenges from pests
and pathogens that can severely reduce yield,
plant longevity, and marketable fruit quality.
Many of these stressors have been an ongoing
concern for decades. Chief among them
are the plant–parasitic root lesion nematode
(P. penetrans); the RBDV; the diseases Verti-
cillium wilt (V. dahliae), Phytophthora root rot
(Phytophthora rubi), and gray mold (Botrytis
cinerea); and the insects SWD (D. suzukii),
the American large raspberry aphid (A. aga-
thonica), and the rose stem girdler (Agrilus cu-
prescens) (Gigot et al. 2013; Martin 1998;
Weiland et al. 2018). This review focuses on
these diseases and pests. Other known and
emerging diseases and pests have been dis-
cussed in detail by Crandall (1995), Finn and
Hancock (2008), Hall et al. (2009), and Dolan
et al. (2018).

Root lesion nematode (P. penetrans). Root
lesion nematodes (Pratylenchus spp.) are glob-
ally widespread plant parasites that affect
many crops. In a 2012 survey (Jones et al.
2013), these nematodes were voted as the
third most economically important group of
nematodes. They are polyphagous, migratory
endoparasites found near and in roots of
plants (Fig. 3A and B). As their name sug-
gests, feeding on roots creates lesions and ne-
crotic areas, resulting in reduced root growth
and even plant death. Severe feeding affects
aboveground biomass, reducing growth and
crop yield (Fig. 3C and D). Their migratory

Fig. 3. (A) Pratylenchus penetrans female at a 100-mm scale. (B) Pratylenchus penetrans male at a 50-mm scale. (C) ‘Willamette’ red raspberry plants in un-
fumigated, P. penetrans–infested soil. (D) ‘Willamette’ red raspberry plants in soil fumigated for P. penetrans. Photos courtesy of Lester N�u~nez-
Rodr�ıguez, Oregon State University, and Inga Zasada, US Department of Agriculture–Agricultural Research Service.
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nature and lack of obvious feeding patterns
make them a challenging pathogen to investi-
gate (Castillo and Volvas 2007; Jones and
Fosu-Nyarko 2014).

Pratylenchus penetrans parasitizes more
than 400 plant species, including red rasp-
berry (Castillo and Volvas 2007; Rudolph
and DeVetter 2015; Zasada et al. 2015). This
nematode is of special importance for red
raspberry in the PNW because of the limited
environmental range suitable for red rasp-
berry production (Rudolph and DeVetter 2015)
and because raspberry-grower profit margins
are narrow (Walters et al. 2017), making eco-
nomical and sustainable control methods critical
for growers. This pest also affects red raspberry
production significantly in Scotland and other
parts of Europe (Hall et al. 2009).

Historically, fenamiphos and methyl bro-
mide were important nematicides used in the
United States to control this pest. As environ-
mental standards and policies have tightened,
approved fumigants have become fewer and
more difficult to use, reducing grower access
to effective chemical treatments for nematodes
(US Environmental Protection Agency 2008;
Zasada et al. 2010). The raspberry industry in
the PNW relies heavily on soil fumigation and
primarily uses 1,3-dichlorpropene for preplant
fumigation to reduce nematode densities, pri-
marily focused on P. penetrans (Zasada et al.
2010). Investigations into nonchemical strate-
gies to manage P. penetrans have included
brassicaceous seed meal, compost, mulch, root
removal, solarization, cover crops, and crop
rotation (DeVetter et al. 2018; Forge and
Kempler 2009; Forge et al. 2012, 2014, 2016;
Gigot et al. 2013; Pinkerton et al. 2000, 2009;
Rudolph et al. 2017, 2018, 2019b; Trudgill and
Brown 1992; Vrain et al. 1996; Walters et al.
2017; Zasada et al. 2009). Most of these strate-
gies were not found to be comparably effective
compared with soil fumigation, or were uneco-
nomical for the grower, leaving preplant soil
fumigation as the primary industry method for
nematode management. Available fumigant
treatments can reduce nematode densities,
but the nematode is never eliminated from a
field.

Raspberry bushy dwarf virus. RBDV is a
pollen-borne viral disease that is character-
ized by poor drupelet set and crumbly fruit in
some infected plants, and is accentuated by
coinfections with Raspberry leaf mottle virus
(RLMV) and Raspberry latent virus (RpLV)
(Martin et al. 2013; Quito-Avila et al. 2014).
RBDV resistance is a major objective in rasp-
berry breeding programs. Although commer-
cial cultivars are often symptomless when
infected only with RBDV, the namesake
dwarf phenotype arises when coinfections
with Black raspberry necrosis virus (BRNV)
occur (Jones 1979). Fruit from infected plants
is susceptible to crumbling resulting from
weak drupelet set or drupelet abortion (Murant
et al. 1974). As a result, fruit may be rejected
from the high-value individual quick-frozen
market by processors, forcing growers to sell
their fruit into lower grade juice, jam, or crum-
bled fruit markets (Washington Red Raspberry
Commission, unpublished information). Losses

from poor fruit set caused by RBDV are esti-
mated to be as high as $2470/ha per year
(Moore and Martin 2008).

RBDV was originally classified among
the tripartite ilarviruses of the family Bromo-
viridae before being classified into a new ge-
nus Idaeovirus within Bromoviridae and was
most recently placed into the family Mayo-
viridae because of its genomic properties
(Martin and Keller 2021; Ziegler et al. 1992,
1993). Isometric virions are �33 nm in diam-
eter and are composed of a single-stranded
RNA bipartite genome with RNA-1, RNA-2,
and RNA-3 (Barnett and Murant 1970; Mayo
et al. 1991; Natsuaki et al. 1991; Ziegler et al.
1992). RNA-1 is 5449 nucleotides and RNA-2
is 2231 nucleotides; both are genomic RNA.
RNA-3 is 946 nucleotides and has been classi-
fied as a subgenomic monocistronic coat pro-
tein messenger RNA derived from RNA-2. To
date, RBDV remains the only officially accepted
species in the Idaeovirus genus (International
Committee on Taxonomy of Viruses 2011).
While predominantly a concern in Rubus,
plants in the families Amaranthaceae, Cheno-
podiaceae, Cucurbitaceae, Leguminosae, and
Solanaceae were also hosts after manual sap
inoculation, but the virus did not readily
spread from Rubus to these plants (Barnett
and Murant 1970). RBDV was graft transmis-
sible in other Rosaceae species such as quince
(Cydonia oblonga), the hybrid Pyronia veitchii,
and alpine strawberry (Fragaria vesca) (Credi
et al. 1986; Jones et al. 1982). The first report
of a natural infection of RBDV outside of
raspberry was in grape (Vitis vinifera) in Slo-
venia and later also in Serbia, but has since
been reported in sweet cherry (Prunus avium)
in Turkey (Ça�glayan et al. 2023; Jevremovi�c
and Paunovi�c 2011; Mavri�c et al. 2003;
Mavri�c Ple�sko et al. 2009).

A significant challenge in breeding for
RBDV resistance is the nature of transmission.
The pollen-borne virus is transmitted horizon-
tally and vertically, resulting in infections of
nearby plants and resulting seed (Barnett and
Murant 1970; Cadman 1965; Murant et al.
1974). Because raspberries rely on insect pol-
linators, this appears to contribute to horizon-
tal transmission, but there are no known
insect vectors (Bulger et al. 1990; Murant
et al. 1974). A needle nematode, Longidorus
juvenilis, was reported to be positive for
RBDV; the vector status of this nematode is
still being investigated (Mavri�c Ple�sko et al.
2009). Insecticides do not appear to reduce
viral spread. Current management recom-
mendations are to cultivate virus-free plants
away from wild Rubus stands such as thim-
bleberry (R. parviflorus), which can harbor
the virus. Growing virus-infected plants ap-
peared to contribute to viral spread more than
field proximity to wild stands (�Spak and
Kubelkov�a 2000). However, eliminating RBDV
from infected plants for continued use as parents
and selections in breeding is difficult and time-
consuming, even with the aid of tissue culture
and thermotherapy (Chambers 1961; Lankes
1995; Mathew et al. 2021; Theiler-Hedtrich and
Baumann 1989). For these reasons, RBDV is a
major challenge not only in grower fields, but

also for nursery propagation and maintenance
of virus-free breeding populations.

Phytophthora root rot (P. rubi). Phytoph-
thora rubi [Wilcox and Duncan (Man in’t
Veld 2007)] is an economically significant
soilborne pathogen of red raspberry commonly
found in Washington, USA; British Columbia,
Canada; and the northeastern United States (Gi-
got et al. 2013; Sapkota et al. 2022; Stewart
et al. 2014; Weiland et al. 2018; Wilcox 1989).
Black raspberries may also be infected but are
generally much less susceptible (Fiola and
Swartz 1994; Funt 2013; Wilcox and Cooke
2017). In addition to P. rubi, other Phytoph-
thora species, such as P. cactorum and P.
megasperma, may be important locally or
regionally (Montgomerie and Kennedy 1980;
Weiland et al. 2024; Wilcox 1989). Phytoph-
thora rubi often co-occurs with other soilborne
pathogens, including P. penetrans, V. dahliae,
and various other Fusarium, Cylindrocarpon,
Rhizoctonia, and Pythium species (Gigot et al.
2013; Weiland et al. 2018). Together, these
pathogens are suspected of forming a soil-
borne disease complex that contributes to an
overall decline in raspberry health, productiv-
ity, and field longevity (Weiland et al. 2018).
However, P. rubi appears to be among the
most damaging of the soilborne pathogens,
and fields where P. rubi occurred were more
than twice as likely to have severe root rot
symptoms than fields where it did not occur.

Phytophthora species are not true fungi,
but are more closely related to brown algae,
and are properly classified as oomycetes (wa-
ter molds). Oomycetes produce motile spores
(zoospores) in response to high soil moisture.
Zoospores are attracted to root exudates, and
swim to fine roots where they initiate infec-
tion. Excessive irrigation, precipitation, or poor
drainage can exacerbate infection and lead to
significant plant loss (Duncan and Kennedy
1989; Wilcox and Cooke 2017). Phytophthora
rubi zoospores are likely produced in late
spring and summer, when field soils are warm,
near 21 �C (Graham et al. 2021). Most Phy-
tophthora species also produce thick-walled
survival spores (either chlamydospores or
oospores), which can survive for years in the
soil. Combined, these characteristics can cause
root rot to develop very rapidly when condi-
tions are optimal, and make the pathogen ex-
tremely difficult to control in infested fields.

Once infection has occurred, P. rubi rots
the fine roots, leaving larger structural roots
behind. Lesions may develop on large roots
and extend above the soil line into the lower
cane, which may shrivel and turn reddish brown
to purple or black (Stewart et al. 2014; Weiland
et al. 2018; Wilcox and Cooke 2017). Scraping
away the bark reveals water-soaked, reddish
brown lesions with a distinct margin between
recently killed and healthy tissues (Fig. 4A).
Injured roots become increasingly unable to
transport water and nutrients, leading to above-
ground symptoms of stunting, wilting, leaf chloro-
sis or reddening, and cane death (Fig. 4A and B).
These symptoms may occur on only one or
two canes, or may affect the entire plant. Severe
infections can cause up to 100% plant mortality
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in grower fields (Gigot et al. 2013; Weiland
et al. 2018).

In the PNW, a combination of preplant soil
fumigation, raised beds, resistant cultivars, and
fungicides are used to manage P. rubi. Several
fungicides are available and effective, in-
cluding mefenoxam, phosphorous acid, and
oxathiapiprolin (Heiberg 1995, 1999; Sapkota
et al. 2023a, 2023b; Weiland et al. 2024;
Wilcox et al. 1999). Amendments such as gyp-
sum have been investigated and have shown
promising results as part of a successful inte-
grated pest management plan in conjunction
with raised beds, resistant cultivars, solariza-
tion, and chemical controls (Maloney et al.
1993, 2005; McGregor and Franz 2002; Pin-
kerton et al. 2009). Biological controls have
also been investigated in vitro but have not yet
been examined under field conditions (Tous-
saint et al. 1997; Valois et al. 1996).

Verticillium wilt (V. dahliae). Although
P. rubi is the most destructive root pathogen
of red raspberry, V. dahliae is the most damag-
ing root and vascular pathogen of black rasp-
berry (Mercier and Kong 2017). Unlike P. rubi,
V. dahliae is a true fungus. It can survive in
field soil for decades as hard, microscopic
structures called microsclerotia. Microsclero-
tia germinate in response to root exudates and
infect the fine roots of susceptible plant hosts.
Once infection has occurred, the pathogen plugs
and kills the water-conducting tissues (xylem),
leading to wilting and cane death (Fig. 5). Un-
like Phytophthora species, V. dahliae does not
cause root decay, thus the fine root system may
still be intact on recently killed plants. Infected

canes may be discolored purple to black and are
very similar in appearance to canes killed by
P. rubi. Therefore, plant samples should be sent
to a diagnostic laboratory to confirm which
pathogen is present, because many fungicides
used to manage P. rubi are ineffective against
V. dahliae.

Although red raspberry is not as suscepti-
ble to V. dahliae as black raspberry, severe in-
fection is observed occasionally, especially
when caneberries are grown in fields that were
cropped previously with potato (Solanum tu-
berosum) or mint (Mentha spp.) (Weiland
et al. 2018). Both mint and potato are highly
susceptible to V. dahliae, and cropping with
either of these plants can cause soil popula-
tions of the pathogen to build up to extremely
damaging levels, resulting in major damage
on caneberries grown in the field afterward.

Verticillium wilt is extremely difficult to
manage once a field becomes infested. In woody
crops, the disease is most commonly managed
by either not planting susceptible crop species
into fields where the pathogen is present or by
preplant fumigation under tarp (Mercier and
Kong 2017). This is a challenge in Oregon,
where black raspberry is commonly planted
in fields that previously contained other host
crops such as potato. Unfortunately, there are
no known fungicides that are effective against
this disease. Solarization can reduce soil pop-
ulations of the pathogen (Pinkerton et al.
2000), but the effect is inconsistent and does
not penetrate deeply enough into the soil pro-
file to provide effective, long-lasting disease
control in northern locations. Host resistance

has not been well explored in black raspberry
cultivars, although hybrids containing red rasp-
berry parentage were more tolerant of Verticil-
lium wilt than those containing only black
raspberry parentage (Fiola and Swartz 1994).
Similarly, only one or two of 17 black rasp-
berry accessions had low symptom severity af-
ter inoculation in a greenhouse screening assay,
although this effect was intermittent and severe
disease was occasionally seen on all 17 geno-
types (Weiland JE, unpublished data).

Gray mold (B. cinerea). Botrytis cinerea is
a necrotrophic, haploid, ascomycete fungus
that affects more than 1400 plant species world-
wide (Alfonso et al. 2000; Fillinger 2016;
Garfinkel et al. 2019; Ma and Michailides 2005;
Staats et al. 2005; Williamson et al. 2007). Bo-
trytis cinerea is the causal agent of cane blights,
rots, and gray mold, a globally destructive dis-
ease that causes significant yield loss of red
raspberry in the field and postharvest (Elad
et al. 2004; Leroux 2007). The regional climate
in the PNW contributes to high disease pressure
from Botrytis spp. on red raspberry. Botrytis
spp. can infect any foliar part of the plant, partic-
ularly leaves, buds, flowers, or fruit at a variety
of developmental stages (Fig. 6) (Williamson
et al. 2007). Infection of raspberry flowers and
berries reduced yield and berry quality directly
(Dashwood and Fox 1988; Kozhar and Peever
2018). The global annual cost to control B. cin-
erea exceeds $1 billion/year and management
relies heavily on the use of synthetic fungicides
(Leroux 2007; Yin et al. 2012).

Botrytis cinerea is a high-risk fungal path-
ogen for the development of fungicide resis-
tance as a result of its rapid life cycle, genetic
diversity, and high fecundity (Atwell et al.
2015; Hahn 2014). Resistance to Fungicide
Resistance Action Committee (FRAC) clas-
ses, including demethylation inhibitors, succi-
nate dehydrogenase inhibitors, and quinone
outside inhibitors has been reported world-
wide (Hahn 2014; Zhang et al. 2016) and is
a serious limitation for effective disease con-
trol. In the PNW, the primary management
strategy for gray mold has been the use of fun-
gicides with single-site modes of action (Hahn
2014). Growers often alternate fungicides with
different FRAC codes, determined by their
modes of action, to slow the development of
resistance (Konstantinou et al. 2015; Polat
et al. 2018; Zhang et al. 2016).

Further investigations have revealed there
are genetic differences in B. cinerea populations
with regard to fungicide sensitivities (Fournier
et al. 2002; Konstantinou et al. 2015; Leroux
et al. 2002; Martinez et al. 2005; Mart�ınez et al.
2008). Differences in fungicide resistance pro-
files could be related to high levels of genetic
diversity and restricted gene flow among the
different cryptic groups of B. cinerea (Fournier
et al. 2002, 2005; Giraud et al. 1997; Leroux
et al. 2002; Martinez et al. 2003; Mart�ınez et al.
2008; Walker et al. 2011). Fournier and Giraud
(2008) demonstrated high Botrytis spp. genetic
diversity within fields. Hu et al. (2018) showed a
high diversity between isolates from the same
location, and even on the same host plant, with
multiple haplotypes exhibiting different fungicide-
resistant profiles existing on the same plant

Fig. 4. (A) Scraped red raspberry (Rubus idaeus) root revealing the water-soaked, reddish lesion typical
of Phytophthora rubi infection. (B) Whole-plant symptoms of P. rubi infection in red raspberry.
Photos courtesy of Jerry Weiland, US Department of Agriculture–Agricultural Research Service.

Fig. 5. (A) Red raspberry (Rubus idaeus) with symptoms of Verticillium dahliae infection, (B) Black
raspberry (Rubus occidentalis) with symptoms of V. dahliae infection. Photos courtesy of Jerry
Weiland, US Department of Agriculture–Agricultural Research Service.
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tissue. The high genetic diversity of these
pathogens and lack of clear genetic resistance
in commercially elite germplasm make it a
challenge to address by breeding efforts.

Insect Pests of Caneberries in the PNW

Spotted-wing Drosophila (D. suzukii). Orig-
inating in east Asia, SWD (syn. Asian vine-
gar fly; D. suzukii) has become one of the
most important insect biotic stresses for small
fruits and stone fruits such as blueberry, cane-
berries, strawberry, and cherry within the
past two decades (Lee et al. 2011). It was in-
troduced to the continental United States in
California in 2008, and by 2015, was present
in most states (Asplen et al. 2015). Compared
with other fruit, red raspberry is a preferred
host for SWD (Bellamy et al. 2013; Burrack
et al. 2013).

This fly has a serrated ovipositor that al-
lows it to penetrate the fruit skin and lay eggs
within ripening fruit (Fig. 7A). The develop-
ing larvae feed on the fruit tissue, inflicting
heavy damage. The infested fruit is subject to
rejection by fruit packers, sellers, and importers
because of the presence of SWD, infections
from other pathogens resulting from SWD
damage, and violations of maximum residue
limits from pesticide applications (Goodhue
et al. 2011). In California, crop damage from
SWD can lead to temporary price increases for

growers, but overall represents significant reve-
nue reductions (Goodhue et al. 2011).

Since its introduction, there has been heavy
reliance on insecticides to manage SWD, but
in recent years there has been emerging re-
search demonstrating the use of biological
control agents (e.g., parasitoid wasps, insect
and avian predators, entomopathogenic nem-
atodes), nonhazardous sugar substitutes (e.g.,
erythritol), and physical barriers and deter-
rents (e.g., exclusion netting, plastic mulch)
for management (Carroll et al. 2023; Choi
et al. 2017; Lee et al. 2019; McIntosh et al.
2023; Sampson et al. 2017; Stockton et al.
2020). Since 2022, releases of the imported
parasitoid Ganaspis kimorum have been made
throughout the United States, and another par-
asitoid originally from Asia, Leptopilina ja-
ponica, has established on its own throughout
North America (Gariepy et al. 2024). The im-
pacts of these parasitoids on SWD popula-
tions are being monitored.

American large raspberry aphid (A.
agathonica). The large raspberry aphid (syn.
raspberry aphid, common raspberry aphid) is
a significant concern for red raspberry pro-
duction in North America and Europe. The
species differ between the two locations. The
American large raspberry aphid is A. agathonica
(Fig. 7B), whereas the European large raspberry
aphid is A. idaei.

Feeding on raspberry plants by the Ameri-
can large raspberry aphid can result in leaf
curl, which on its own is not detrimental to
the plant (Funt 2013). The detrimental effect
is the aphid’s role as a vector for many of the
viruses that contribute to the raspberry mo-
saic virus complex and the raspberry crumbly
fruit complex. The raspberry mosaic virus com-
plex includes BRNV, RLMV, and Rubus yel-
low net virus (RYNV) (Martin et al. 2013). The
raspberry crumbly fruit complex is comprised
of RBDV, RLMV, RYNV, and RpLV (Martin
et al. 2013). Of all these viruses, RBDV is the
only one that is not transmitted by aphids (refer
to earlier section). To add to this complexity,
each of these viruses are transmitted in variable
manners, with BRNV transmitted nonpersis-
tently, RYNV and RLMV likely transmitted
semipersistently, and RpLV transmitted
persistently (Cadman 1954; Halgren et al.
2007; Jones et al. 2002; Quito-Avila et al.
2012).

Options for aphid management include bi-
ocontrols (e.g., parasitic wasps), cultural con-
trols (e.g., removal of plant debris), chemical
controls (e.g., imidacloprid), and plant ge-
netic resistance. No genes have been identi-
fied that confer resistance to these viruses,
and research has therefore focused on im-
proving resistance to the insects that transmit
virus.

Rose stem girdler (A. cuprescens). Since
2022, the rose stem girdler has been found
from the southern Willamette Valley of
Oregon, USA, to the Canadian border of west-
ern Washington, USA (O’Dea 2024). Intro-
duced from Europe, it was first reported in the
eastern United States as early as 1913.

The insect is a metallic-colored beetle that
lays its eggs on the canes of various Rubus
species and rose plants (Fig. 7C). The hatched
larvae tunnel and feed inside the cane that gir-
dles the canes. Girdling can cause galling in
first-year canes, can increase cane snapping
and breakage significantly, and can reduce
fruit production in second-year canes. Heavy
infestation for 2 to 3 years will kill plants. The
larvae overwinter inside the canes and emerge
as adults from late May to early June after
accumulating �900 h at more than 55 �F
(O’Dea and Hill 2022).

Effective monitoring with traps for the rose
stem girdler is still in need of development.
Currently, growers are recommended to use in-
secticides for 3 weeks after pest emergence,

Fig. 6. (A) Ripe red raspberry (Rubus idaeus) fruit during harvest, infected with Botrytis cinerea co-
nidia. (B) Botrytis cinerea producing millions of spores on red raspberry cane lesion. Photos cour-
tesy of Jeff DeLong, US Department of Agriculture–Agricultural Research Service.

Fig. 7. (A) Drosophila suzukii on ripe red raspberry (Rubus idaeus) fruit. (B) Colony of Amphorophora agathonica in various life stages feeding on a black
raspberry (Rubus occidentalis) seedling. (C) Agrilus cuprescens on a blackberry leaf. Photos courtesy of Savannah Phipps, Oregon State University; Victoria
Skillman, US Department of Agriculture–Agricultural Research Service; and Justin O’Dea, Washington State University.
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and to prune canes with damage. Pruned canes
need to be removed or destroyed to kill the
overwintering larvae. A parasitoid that attacks
the larval stage, Baryscapus rugglesi, has been
found regularly in the PNW (O’Dea et al.
2023). Because this parasitoid is already natu-
rally occurring, a greater understanding of con-
servation practices to enhance its effectiveness
is needed.

Current Understanding of Disease
Resistance Genetics

For the diseases and pests discussed earlier,
management has been ongoing for decades,
primarily with chemical methods. Understand-
ing the impacts that certain pesticides have on
environmental and human health has improved
in the 21st century, reducing the availability of
previously approved chemicals. Although inno-
vative alternates to chemical control show some
promise, many are ineffective or not economi-
cally feasible. In many cases, genetic resistance
is the most sustainable and economical form of
management despite the occasional emergence
of new resistance-breaking pests or pathogens.
Sources of genetic resistance to several pests
and pathogens have been identified in red rasp-
berry, although our knowledge remains limited
for many of these biotic stresses.

Genetics of root lesion nematode resistance.
Bristow et al. (1980) evaluated the reaction
of 18 red raspberry cultivars to P. penetrans
and found that some cultivars showed heavy
infestations by P. penetrans, but with no sig-
nificant impact on biomass fresh weight com-
pared with the controls. This suggested that
the raspberries under investigation possessed
varying degrees of tolerance to P. penetrans;
however, the authors speculated that the
method used may not have elicited a significant
response from the plants. Vrain and Daubeny
(1986) performed a similar experiment with 21
red raspberry genotypes, including 10 from the
experiment by Bristow et al. (1980) and four
related Rubus cultivars. Some cultivars dem-
onstrated tolerance, and some demonstrated
resistance based on the number of nematodes
present and effects on plant growth and de-
velopment, perhaps indicating that tolerance
may be sustained for some time before a
plant shows symptoms of P. penetrans para-
sitism. More recently, Zasada and Moore
(2014) evaluated the reaction of a panel of
Rubus species to P. penetrans in a green-
house trial, including some of those from the
Vrain and Daubeny (1986). The host status of
R. crataegifolius ‘Jokgal’ was inconclusive in
this trial, although Vrain and Daubeny (1986)
previously found ‘Jokgal’ to support low densi-
ties of P. penetrans. Zasada and Moore (2014)
observed that two black raspberry species, R.
niveus and Rubus leucodermis, were poor hosts
for P. penetrans across years and that they may
be useful in breeding programs. However, rasp-
berry ‘Tulameen’ (PI 618441) (Daubeny and
Anderson 1991), which has R. niveus in its ped-
igree, did not support lower P. penetrans densi-
ties consistently compared with the industry
standard ‘Meeker’.

Current information on the host status of
various clones and insights into the genetics of
P. penetrans resistance suggest that P. pene-
trans resistance is quantitative and influenced
by genetic background. Vrain et al. (1994) fur-
ther investigated the mode of inheritance for
P. penetrans resistance using a half-diallel anal-
ysis with crosses between two resistant and two
susceptible genotypes. Resistance of red rasp-
berry to P. penetrans was determined to be a
quantitative trait, as no bimodal distributions
indicative of a qualitative trait were observed
for the recorded traits. A limitation of that
study was its small sample size. Larger family
size may reduce variability and allow determi-
nation of the resistance inheritance mode. To
date, no published studies have evaluated and
characterized P. penetrans resistance using ge-
nomic or quantitative genetic approaches.

Genetics of RBDV resistance. A single re-
sistance gene to RBDV known as Bu was
identified in the early 1980s (Jones et al. 1982;
Murant et al. 1982). This is a dominant gene
that appears to confer complete immunity to
Scottish or common RBDV isolates (RBDV-S).
Resistant cultivars possessing Bu are heterozy-
gous. Cultivars homozygous for Bu were not
identified, suggesting that the homozygous
state may be deleterious to plant health or
is in linkage with other deleterious alleles
(Stephens et al. 2016). Since the discovery of
the Bu gene, there have been intensive efforts
to incorporate this gene while maintaining other
desirable traits. Stephens et al. (2016) located
potential markers for use in marker-assisted
selection (MAS), as did Ward et al. (2012).
However, marker accuracy was dependent on
pedigree, and additional work is needed to de-
termine marker usefulness for breeding. Ge-
netic engineering has also been explored as an
avenue for RBDV resistance. Red raspberry
‘Meeker’ was transformed successfully with the
coat and movement protein genes of RBDV us-
ing Agrobacterium-mediated transformation to
confer resistance to the common RBDV isolates
(Martin and Mathews 2001; Martin et al. 2001).
However, public wariness and governmental
regulations of transgenic plants have impeded
the advancement of these plants for cultiva-
tion or use as parents for breeding resistant
progeny.

After the identification of Bu, resistance-
breaking isolates were discovered in 1981 in
the United Kingdom at about the same time
that seed from the former Union of Soviet
Socialist Republics was introduced to the
area (Barbara et al. 1984; Knight and Barbara
1981; Murant et al. 1982). Identifying addi-
tional sources of resistance became very
important. Previous studies indicated the
presence of additional resistance genes that
were never fully identified, but which appeared
to provide quantitative resistance to the resis-
tance-breaking isolate when Bu was also pre-
sent (Jennings and Jones 1989; Jones et al.
1982). Although resistance-breaking isolates
have been observed in the United Kingdom
and other European countries, the first report
in the United States came from Washington
in 2014 (Lanning 2014; Lanning et al. 2016).
A viral survey would be of great benefit to

researchers and breeders as there have not been
any further reports of this strain in the United
States.

Genetics of Phytophthora root rot resis-
tance. Identifying and understanding Phytoph-
thora root rot has been a significant goal of
breeding programs in the PNW since the 1970s,
and in the United Kingdom since the 1980s
(Barritt et al. 1979, 1981; Knight et al. 1989).
Barritt et al. (1979) screened germplasm for re-
sistance or susceptibility to Phytophthora root
rot and determined high heritability estimates
for resistance, concluding that resistance was
additive, and rapid genetic gain was achiev-
able. Knight and Fern�andez-Fern�andez (2008)
evaluated the nature of resistance in a half-dial-
lel analysis and suggested that resistance was
an additive, quantitative trait. Similar results
were obtained by Nestby and Heiberg (1995);
however, they found that nonadditive gene ac-
tion occurred as well.

As molecular techniques have advanced,
our understanding of the underlying genetic
mechanisms and modes of inheritance for
Phytophthora root rot resistance has improved
and reinforced some of the conclusions of past
studies. Like Nestby and Heiberg (1995),
Pattison et al. (2007) demonstrated multiple
gene actions. Depending on the trait being
measured (petiole lesion incidence and plant
disease index), additive or dominance effects
may have accounted for a significant propor-
tion of the variance. Their results suggested
other gene effects contributed to recorded phe-
notypes alongside additive and/or dominance
effects, and Pattison et al. (2007) proposed that
qualitative or quantitative measures could be
used to evaluate and improve resistance. The
application of molecular markers for selecting
resistant genotypes was demonstrated by We-
ber et al. (2008), who found that a sequence
characterized amplified region marker and
a cleaved amplified polymorphic sequence
marker were 62% and 56% accurate, respec-
tively, in selecting a resistant individual. Use
of both markers allowed for the retention of
85% of resistant individuals. Additional quan-
titative trait loci (QTLs) associated with Phy-
tophthora root rot resistance allowed for further
investigation into potential mechanisms of re-
sistance, such as the involvement of auxin or
germin-like protein in the initiation of new axial
growth as a defense response. These QTLs can
support the development of predictive molec-
ular marker assays to increase selection effi-
ciency for resistant raspberry progeny using
MAS (Graham et al. 2011; Pattison et al.
2007).

Several available red raspberry cultivars
have desirable levels of Phytophthora root rot
resistance, including ‘Latham’ and ‘Asker’. In
addition, wild, uncultivated species have been
examined as novel sources of genetic resis-
tance for root rot (Barritt et al. 1979; Røen
et al. 2012). Several of these species possess
desirable resistance levels, such as R. spectabi-
lis, as well as R. coreanus, R. inominatus, R. ni-
veus, R. lasiostylus, and R. strigosus (Kempler
et al. 2012; Knight 1991). Breeding efforts by
the WSU raspberry breeding program for im-
proving red raspberry resistance to Phytophthora
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root rot has produced several notable red
raspberry cultivars from the ‘Cascade’ series
with moderate to high levels of resistance, in-
cluding ‘Cascade Delight’, ‘Cascade Harvest’,
‘Cascade Bounty’, and ‘Cascade Dawn’ (Moore
2004, 2006; Moore and Finn 2007; Moore et al.
2015).

Genetics of Verticillium wilt resistance.
Despite the importance of Verticillium wilt in
black raspberry production, there are few
publications elucidating resistance or sources
of resistance. No resistance to Verticillium wilt
has been reported for released black raspberry
cultivars (Fiola and Swartz 1994; Zeller 1936).
Resistance in red raspberry and blackberry has
been established. Red raspberry cultivars such
as ‘Antwerp’, ‘Cayuga’, ‘Cuthbert’, ‘Marlboro’,
‘Ohta’, ‘Owasco’, ‘Seneca’, ‘Superlative’, and
‘Syracuse’ can potentially serve as sources of
resistance for black raspberry breeding (Darrow
1937). However, cultivars resistant to one strain
of V. dahliae may not be resistant to others, as
noted by Zeller (1936). Resistance and toler-
ance have been further demonstrated in Asiatic
species of red raspberry (Zeller 1936). Native
PNW species, R. spectabilis and R. parviflorus,
had minimal to no symptoms of infection and
serve as additional sources of resistance. Other
regional species such as R. leucodermis are
long-lived in the face of infection, but with sig-
nificant yield losses.

Early breeding efforts indicated that the
mechanisms of resistance may be quantita-
tive. Backcrossing to red raspberry has not re-
sulted in distinct segregating phenotypes. In
addition, progeny in subsequent generations
show weak or no resistance, suggesting that
numerous small-effect genes may be at play
(Keep 1976, 1989). A partial diallel analysis
also indicated additive gene action and toler-
ance rather than resistance (Fiola and Swartz
1994). Verticillium dahliae was isolated from
resistant cultivars, indicating these plants re-
mained economically productive under infec-
tion (Fiola and Swartz 1994). More recently,
an RNA sequencing study was performed to
identify candidate genes involved in V. dah-
liae infection in black raspberry (Bushakra
et al. 2016). Several transcripts were identi-
fied as homologs to the Ve1 resistance gene
in tomato, but were not detected among the
differentially expressed genes (DEGs) char-
acterized in the study. Other general pest and
pathogen response genes were observed
among the DEGs. The identification of these
genes in response to V. dahliae infection pre-
sents the opportunity to understand tolerance
in black raspberry more fully.

Genetics of B. cinerea resistance. The ear-
liest publications from breeding programs de-
tailed the struggle to develop cultivars with
Botrytis resistance. One of the primary com-
plications is that the same causal organism
causes two diseases: cane Botrytis and gray
mold (syn. fruit Botrytis). Cane Botrytis ap-
pears to be a significant contributor to gray
mold development in fruit (Jennings and Bry-
don 1989). Knight (1980a) also found a posi-
tive correlation between cane Botrytis and
gray mold incidence. Jennings and Carmi-
chael (1975) recommended selecting individuals

resistant to cane Botrytis and gray mold to re-
duce inoculum. In contrast, other researchers
determined there was no strong correlation be-
tween cane Botrytis and gray mold develop-
ment and stated that prior reports of significant
correlations were the result of a few strong cor-
relations in evaluated cultivars (Daubeny and
Pepin 1981; Knight 1980b).

Decades of research by breeding pro-
grams in British Columbia, Scotland, and
England indicate that cane Botrytis resistance
is complex and is likely conferred by a com-
bination of additive, minor genes and few
major genes (Daubeny 1987; Jennings 1983;
Jennings and Brydon 1989). Gene H, which
is responsible for cane pubescence, also ap-
peared to be associated significantly with
cane Botrytis resistance (Graham et al. 2006),
although not strongly (Knight 1980a). Whether
this association was a result of linkage with re-
sistance genes or physiological differences that
deterred infection is unknown (Graham et al.
2006). Resistance not associated with gene H
has been noted to be present in the Asiatic spe-
cies R. pileatus, R. crataegifolius, R. coreanus,
and Rubus mesogaeus and the North American
species R. occidentalis and R. strigosus (Jen-
nings 1983; Jennings and Brydon 1989; Jen-
nings and Williamson 1982; Keep et al. 1977;
Knight 1980a, 1980b). It is believed that red
raspberry ‘Chief’ (PI 553508) inherited this re-
sistance from the R. strigosus in its pedigree
(Daubeny 1987).

Most of the published studies in postharv-
est fruit rot resistance date back at least 45
years. Resistance has been observed in R. oc-
cidentalis, R. crataegifolius, and Rubus phoe-
nicolasisus (Kichina 1976; Knight 1980a,
1980b). Red raspberry ‘Matsqui’ (PI 553391)
and ‘Cuthbert’ have repeatedly demonstrated
low gray mold incidence in fruit rot testing
procedures (Barritt 1971; Daubeny and Pepin
1969, 1974). Red raspberries ‘Carnival’ (PI
553481), ‘Meeker’, ‘Glen Isla’ (PI 553510),
‘Nootka’, and ‘Ottawa’ have also been re-
ported to have low gray mold incidence
(Barritt 1971; Daubeny and Pepin 1969, 1974).
Combined, it appears that there is tolerance pri-
marily occurring in the cultivars reported to
have low disease incidence. Furthermore, there
appears to be correlations in berry color and
other characteristics to resistance, as Harshman
et al. (2014) found purple and black raspberries
resisted rot the longest. Resistant raspberries
had the highest phenolics and anthocyanins and
the lowest ethylene evolution rates, which may
be contributing to delayed disease development.
The researchers suggested that breeding for
low ethylene production of berries may pro-
tect against rot.

Current Understanding of Insect Pest
Resistance Genetics

Genetics of SWD resistance. Host plant re-
sistance is also critical in integrated pest man-
agement, although few studies related to SWD
have occurred in red raspberry. Strong resis-
tance against SWD has not been observed, but
some cultivars are more susceptible to SWD
than others (Burrack et al. 2013; Lee et al.

2011; W€ohner et al. 2021). Lee et al. (2011)
found no difference in susceptibility to SWD
for six cultivars (Table 2). Burrack et al. (2013)
also evaluated several berry crops, including
nine red raspberry cultivars (Table 2), against
SWD and detected variable infestation rates
but no resistance among cultivars. However,
there was a need to validate the apparent re-
duced preference among cultivars, which had
lower infestation rates (Burrack et al. 2013).
W€ohner et al. (2021) evaluated 37 floricane
and 23 primocane fruiting red raspberry culti-
vars and confirmed previous reports of varying
levels of susceptibility and an absence of
strong resistance to SWD. Of the 60 cultivars
tested, only ‘Dorman Red’ (PI 553425), a
Mississippian floricane fruiting type (Overcash
1972), and ‘Pokusa’, a Polish primocane fruit-
ing type, were classified as tolerant. Infestation
appeared to be strongly correlated to berry
firmness, but was not correlated with Brix and
acidity. This finding contrasts with previous
reports of a positive correlation between Brix
and SWD development, and a lack of correla-
tion with pH (Lee et al. 2011). Many other
cultivars have not been evaluated, and assess-
ing common PNW raspberry cultivars for
susceptibility to SWD would be useful.

Genetics of American large raspberry aphid
resistance. Genetic resistance to A. agathon-
ica has been studied since the 1920s to miti-
gate the spread of the raspberry mosaic virus
complex (Rankin 1927; Rankin and Hockey
1922). Research has indicated separate resis-
tance genes to A. idaei and A. agathonica,
which were thought to be the same species be-
fore the discovery of these genes (Hill 1956).

To date, few known resistance genes to A.
agathonica have been identified in raspberry.
Resistance genes Ag1, Ag2, Ag3, Ag4, and Ag5,
and an undesignated resistance gene (syn. Ag6)
have been discovered in plants from the north-
eastern United States or southeastern Canada
(Daubeny 1966; Daubeny and Stary 1982;
Dossett and Finn 2010). In contrast, 13 resis-
tance genes to A. idaei are known in Europe
(A1–A10, AK4a, AL518, and Acor) (Fern�andez-
Fern�andez et al. 2013; Knight et al. 1959,
1960; Ourecky 1975). The most well-known
and deployed resistance gene, Ag1, was origi-
nally found in red raspberry ‘Lloyd George’
and was used for more than 50 years in breed-
ing programs (Daubeny 1966). However, an
aphid biotype was discovered in the early
1990s that broke resistance conferred by Ag1
(Daubeny and Anderson 1993). Ag2 and Ag3
are also dominant genes derived from red
raspberry, specifically a wild R. strigosus pop-
ulation found in Ottawa, Canada, but unlike
Ag1, these genes were complementary and
conferred only partial resistance (Daubeny
and Stary 1982). The phenotypic similarities
between the three genes has made it challeng-
ing to incorporate Ag2 and Ag3 reliably into
new red raspberry cultivars (Dossett and
Kempler 2012). Ag4, Ag5, and Ag6 resis-
tance genes come from R. occidentalis acces-
sions collected from Maine and Michigan,
USA, and Ontario, Canada. These three genes
are of great interest because native genes are
easier to integrate into breeding lines than red
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Table 2. Red raspberry (Rubus idaeus) cultivars evaluated for spotted-wing drosophila (Drosophila suzukii) resistance.

Cultivar PI no. Fruiting type Breeding program Study
Cascade Delight — Floricane Washington State University, Puyallup, WA,

USA
Lee et al. (2011), W€ohner

et al. (2021)
Centennial PI 618456 Floricane Washington State University, Puyallup, WA,

USA; University of Idaho, Sandpoint, ID,
USA; Oregon State University, Corvallis,
OR, USA; US Department of Agriculture,
Corvallis, OR, USA

Lee et al. (2011)

Coho PI 618392 Primocane Oregon State University, Corvallis, OR,
USA; US Department of Agriculture,
Corvallis, OR, USA

Lee et al. (2011)

Encore PI 638282 Primocane Cornell University, Geneva, NY, USA Lee et al. (2011)
Malahat PI 638206 Floricane Pacific Agri-Food Research Centre of

Agriculture and Agri-Food Canada
Lee et al. (2011)

Willamette PI 553362 Floricane US Department of Agriculture, Corvallis,
OR, USA

Lee et al. (2011), W€ohner
et al. (2021)

Autumn Britten PI 653100 Primocane Horticulture Research International, East
Malling, Kent, UK

Burrack et al. (2013)

Caroline PI 653101 Primocane University of Maryland, College Park, MD,
USA; Rutgers University, New
Brunswick, NJ, USA; Virgina Polytechnic
Institute and State University, Blackstone,
VA, USA; University of Wisconsin-River
Falls, River Falls, WI, USA

Burrack et al. (2013)

Joan J — Primocane Medway Fruits, Kent, UK Burrack et al. (2013)
NC 344 — Floricane North Carolina State University, Raleigh,

NC, USA
Burrack et al. (2013)

Nantahala — Primocane North Carolina State University, Raleigh,
NC, USA

Burrack et al. (2013)

Nova PI 553480 Primocane Agriculture Canada, Kentville, Nova Scotia,
Canada

Burrack et al. (2013)

Octavia — Floricane — Burrack et al. (2013)
NCTG-1 — Floricane — Burrack et al. (2013)
Dorman Red PI 553425 Floricane Mississippi State University, Starkville, MS,

USA
W€ohner et al. (2021)

Japanese Wineberry — Floricane — W€ohner et al. (2021)
Him BK33-122 — Floricane — W€ohner et al. (2021)
Gelbe Gigant — Floricane — W€ohner et al. (2021)
Schwarze aus Brunn — Floricane — W€ohner et al. (2021)
Malling Promise PI 553425 Floricane Horticulture Research International, East

Malling, Kent, UK
W€ohner et al. (2021)

Him BK33-85 — Floricane — W€ohner et al. (2021)
Wei Rula — Floricane — W€ohner et al. (2021)
Him 14 30-128 — Floricane — W€ohner et al. (2021)
Madawaska PI 553376 Floricane Agriculture Canada, Abbotsford, British

Columbia, Canada
W€ohner et al. (2021)

Royalty PI 553302 Floricane Cornell University, Geneva, NY, USA W€ohner et al. (2021)
Tula Magic — Floricane Promo-Fruit Ltd., Rafz, Switzerland W€ohner et al. (2021)
Himbo Star — Floricane Promo-Fruit Ltd., Rafz, Switzerland W€ohner et al. (2021)
Radziejowa — Floricane — W€ohner et al. (2021)
Schonemann PI 553527 Floricane University of Bonn, Bonn, Germany W€ohner et al. (2021)
Rumiloba — Floricane — W€ohner et al. (2021)
Preussen PI 553525 Floricane University of Bonn, Bonn, Germany W€ohner et al. (2021)
Oktavia — Floricane — W€ohner et al. (2021)
Rumla — Floricane — W€ohner et al. (2021)
Glen Ample PI 689559 Floricane Scottish Crop Research Institute W€ohner et al. (2021)
Nootka PI 553372 Floricane Agriculture Canada, Abbotsford, British

Columbia, Canada
W€ohner et al. (2021)

Loganberry — Floricane — W€ohner et al. (2021)
Rubaca — Floricane Technical University of Munich, Munich,

Germany
W€ohner et al. (2021)

Reflamba — Floricane — W€ohner et al. (2021)
Elida — Floricane — W€ohner et al. (2021)
Kozacka — Floricane — W€ohner et al. (2021)
Lloyd George PI 643942 Floricane — W€ohner et al. (2021)
Sugana — Floricane Lubera Ag, Buchs, Switzerland W€ohner et al. (2021)
Tulameen PI 618441 Floricane Agriculture Canada, Abbotsford, British

Columbia, Canada
W€ohner et al. (2021)

Malling Freya Floricane Horticulture Research International, East
Malling, Kent, UK

W€ohner et al. (2021)

Meeker PI 553384 Floricane Washington State University, Puyallup, WA,
USA

W€ohner et al. (2021)

Sanibelle — Floricane Technical University of Munich, Munich,
Germany

W€ohner et al. (2021)

(Continued on next page)
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raspberry resistance genes. Introgression from
red raspberry involves several generations
of backcrossing to reconstitute the black rasp-
berry fruit phenotype from the “purple hy-
brids” that result from black raspberry and red
raspberry crosses (Dossett and Finn 2010). Ag6
had similar phenotypic responses as Ag4 and
requires further investigation to determine its
novelty (Dossett and Finn 2010).

Wild R. strigosus accessions have been of
significant interest because these plants have
demonstrated resistance to the aphid and are
the source of Phytophthora root rot resistance
in red raspberry cultivars such as ‘Newburgh’
and ‘Latham’ (Daubeny and Stary 1982; Dau-
beny et al. 1992). Accessions of R. idaeus, R.
spectabilis, R. crataegifolius, and R. parviflo-
rus also have aphid resistance (Daubeny et al.
1992). The details of these resistance sources
remain vague and have not yet been compared
with previously identified resistance genes.
Although these sources may have underuti-
lized resistance, incorporating these genetics
presents additional challenges, including lim-
ited diversity, varying degrees of hybrid com-
patibility with R. idaeus or R. occidentalis, and
the incorporation of undesirable wild traits fol-
lowing successful interspecific hybridization.

Additional research into the resistance
mechanisms of these genes may aid breeding
efforts. Aphid resistance has been character-
ized as either antixenosis resistance (affects

feeding and alters insect behavior), antibiosis
resistance (affects biotic potential of the in-
sect such as fecundity)or tolerance (the plant’s
ability to remain economically vigorous in
the face of infestation) (van Emden 2007). To
date, Ag1, Ag4, Ag5, and an undesignated
resistance gene have been evaluated for
their resistance mechanisms. Ag1 demon-
strated antixenosis, as did Ag4 to Ag6, mak-
ing it difficult to distinguish each of these
genes based on phenotype alone (Kennedy
and Schaefers 1974; Lightle et al. 2012,
2015). Although still unclear, Ag2 and Ag3
may have more of an antibiotic mechanism,
as small colonies of aphids were observed on

these plants (Daubeny and Stary 1982). Simi-
lar observations of red raspberry ‘Washing-
ton’ were made by Kennedy and Schaefers
(1974), who concluded that ‘Washington’
demonstrated antibiosis. ‘Washington’ is de-
rived from a cross between ‘Cuthbert’, a
chance seedling selected from the wild in the
northeastern United States, likely derived from
R. strigosus, and ‘Lloyd George’, a chance
seedling selected from the wild in Scotland,
likely derived from R. idaeus. It appears that
‘Washington’ did not inherit Ag1 from ‘Lloyd
George’, but potentially inherited genes such
as Ag2 and Ag3 or uncharacterized genes from
‘Cuthbert’ (Kennedy and Schaefers 1974).

Table 2. (Continued)

Cultivar PI no. Fruiting type Breeding program Study
Sokolica — Floricane — W€ohner et al. (2021)
Gelbe Antwerpen — Floricane — W€ohner et al. (2021)
Pokusa — Primocane Research Institute of Pomology and

Floriculture, Brzezna, Poland
W€ohner et al. (2021)

Autumn First — Primocane Lubera Ag, Buchs, Switzerland W€ohner et al. (2021)
Amira (BP-1) — Primocane Berryplant, Baselga di Pinè, Italy W€ohner et al. (2021)
Himbo Top — Primocane Promo-Fruit Ltd., Rafz, Switzerland Burrack et al. (2013),

W€ohner et al. (2021)
Autumn Best — Primocane Lubera Ag, Buchs, Switzerland W€ohner et al. (2021)
Heritage — Primocane Cornell University, Geneva, NY,

USA
W€ohner et al. (2021)

Fall Gold PI 553507 Primocane University of New Hampshire, Durham,
NH, USA

W€ohner et al. (2021)

Aroma Queen — Primocane — W€ohner et al. (2021)
Saxa Record — Primocane — W€ohner et al. (2021)
Goldmarie — Primocane — W€ohner et al. (2021)
Polana PI 653106 Primocane Research Institute of Pomology and

Floriculture, Brzezna, Poland
W€ohner et al. (2021)

Kweli — Primocane Advanced Berry Breeding, Hedel,
Netherlands

W€ohner et al. (2021)

Golden Everest — Primocane — W€ohner et al. (2021)
Autumn Bliss PI 553325 Primocane Horticulture Research International, East

Malling, Kent, UK
W€ohner et al. (2021)

Gelbe Siebenkugel — Primocane — W€ohner et al. (2021)
Ruby Fall — Primocane — W€ohner et al. (2021)
Kwanza — Primocane Advanced Berry Breeding, Hedel,

Netherlands
W€ohner et al. (2021)

Enrosadira — Primocane Molari Berries & Breeding, Cesena, Italy W€ohner et al. (2021)
Zefa 3 — Primocane — W€ohner et al. (2021)
Poranna Rosa — Primocane Research Institute of Pomology and

Floriculture, Brzezna, Poland
W€ohner et al. (2021)

Regina — Primocane Berryplant, Baselga di Pin�e, Italy W€ohner et al. (2021)
Mapema — Primocane Advanced Berry Breeding, Hedel,

Netherlands
W€ohner et al. (2021)

Polka — Primocane Research Institute of Pomology and
Floriculture, Brzezna, Poland

W€ohner et al. (2021)

Fallred Streib — Primocane — W€ohner et al. (2021)

Table 3. Rubus spp. with published reference genomes.

Study Species Ploidy Berry type Cultivar
Genome
size (Mb)

VanBuren et al. (2016) Rubus occidentalis 2x Black raspberry ORUS 4115-3 243
VanBuren et al. (2018) R. occidentalis 2x Black raspberry ORUS 4115-3 290
Jibran et al. (2018) R. occidentalis 2x Black raspberry ORUS 4115-3 223.8
Wight et al. (2019) Rubus idaeus 2x Red raspberry Joan J 300
Davik et al. (2022) R. idaeus 2x Red raspberry Anitra 291.7
Price et al. (2023) R. idaeus 2x Red raspberry Autumn Bliss 263

R. idaeus 2x Red raspberry Malling Jewel 265.5
Worthington

et al. (2020)
Rubus ulmifolius 2x Blackberry Burbank Thornless 341
Rubus argutus 2x Blackberry Hillquist 314

Brůna et al. (2023) R. argutus 2x Blackberry Hillquist 298
Paudel et al. (2025) Rubus spp. 4x Blackberry Watson BL1

selection
247

Wang et al. (2021) Rubus chingii 2x Red raspberry — 231.21
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The development and deployment of molecu-
lar markers associated with each of these
genes would be beneficial for breeders seek-
ing to improve selection and combine multi-
ple sources of resistance in future cultivars.

Improvements in Plant Breeding

Red and black raspberries and other cane-
berries are challenging to breed. They are
labor-intensive with long breeding cycles and
require significant time and resources per
breeding cycle. Advances such as genomic
selection and high-throughput phenotyping
(HTP) may help to reduce investments, thus
shortening the breeding cycle through im-
proved selection and evaluation efficiency.
Genomic and phenomic methodological ad-
vancements arise from the progress in genetic
technologies as well as in drones, imaging,
robotics, and artificial intelligence, which
increase the affordability and availability of
important tools to plant breeders. These
technological improvements have been ac-
companied by the development of improved
statistical methods, software, and computing
infrastructure that facilitate the analysis of
large “omics” datasets, leading to a better un-
derstanding of the genomes and genetic ar-
chitecture of agricultural phenotypes.

Studies of genomic and phenomic meth-
odologies for plant breeding are abundant for
staple field crops such as corn (Zea mays)
and wheat (Triticum aestivum). Marker-assisted
breeding (MAB) and HTP, discussed here, are
two techniques that interest plant breeders.
Other such techniques, including genetic en-
gineering, genome editing, speed breeding,
and mutation breeding, have been reviewed
in Elango et al. (2021). Some phenomic and
genomic methodologies have begun to be im-
plemented in raspberry breeding systems, but
there are still many opportunities to study
these techniques.

Caneberry Genetics and Genomics

Genome sequencing and targeted geno-
typing are critical for developing MAB capa-
bilities and investigating the genetic basis of
traits of interest. High-throughput sequencing
has become increasingly affordable, making
genetic and genomic analytic methods more
accessible to horticultural and specialty crops.
Only within the past two decades have these
methods been used to examine traits that are
breeding targets in specialty crops such as
caneberries. Publication of genomic studies
in caneberries has increased within the past
decade. Genetic maps have been published
from multiple red raspberry biparental popu-
lations using simple sequence repeats (SSRs),
amplified fragment length polymorphisms
(AFLPs), expressed sequence tags (ESTs),
random amplified polymorphic DNA (RAPD),
resistance gene analog polymorphisms, single
nucleotide polymorphisms (SNPs), and EST-
SSRs (Graham et al. 2002, 2004; Pattison et al.
2007; Ward et al. 2012). Studies using AFLPs
and RAPD led the development of genetic
maps because these marker types do not require

a reference genome (Jiang 2013), which have
only become available since 2016 (Table 3).
The black raspberry genome was sequenced
and assembled to chromosome scale, followed
by red raspberry and blackberry (Brůna et al.
2023; Davik et al. 2022; Jibran et al. 2018; Pau-
del et al. 2025; Price et al. 2023; VanBuren
et al. 2016, 2018; Wight et al. 2019; Worthing-
ton et al. 2020). A reference genome was also
developed for a red raspberry native to Asia,
Rubus chingii (Wang et al. 2021). Accurately
assembled and annotated genome sequences
enable downstream studies to identify genetic
loci, develop and deploy molecular markers
for targeted genotyping, map new traits, and
accelerate cultivar development.

Linkage and association mapping are valu-
able techniques for elucidating the genomic
loci controlling phenotypic variation for impor-
tant commercial traits and supporting marker
development for MAS. Linkage mapping gen-
erally uses one or more biparental populations
to determine the recombination frequency of
genetic markers and estimate the order and ge-
netic distance between adjacent markers to
produce a map (Collard et al. 2005). QTLs as-
sociated with traits of interest are then identi-
fied using several different statistical methods
that, generally speaking, divide the study pop-
ulation into groups according to genotype at
the locus of a marker of interest and evaluate
these groups for a statistically significant dif-
ference for the trait of interest (Tanksley
1993). Unlike linkage mapping, which is lim-
ited to investigating the effects of alleles con-
tained in one or more biparental populations,
association mapping uses diverse populations
to investigate the effects of a wider set of al-
leles representing a crop’s broader germplasm
base (i.e., one or more breeding programs)
(Gupta et al. 2014). Both methodologies have
their statistical challenges, but one of the
greatest differences is the low resolution and
high power of detection of linkage mapping
vs. the high resolution and low power of asso-
ciation mapping, with association mapping
potentially failing to detect the effects of im-
portant rare alleles present in only a handful of
accessions (Rincent et al. 2014; Zhu et al.
2008).

Currently, linkage mapping studies pre-
dominate in caneberry, with only three re-
ported association mapping studies, two for
blackberry and one for raspberry (Chizk et al.
2023; Godwin 2021; Khadgi and Weber 2021).
Multiple studies on genetic loci for agronomic
traits, fruit and nutritional quality, and biotic
and abiotic resistance traits have occurred for
red raspberry using linkage and association
mapping methods (Bushakra et al. 2013;
Graham et al. 2006, 2011; Kassim et al. 2009;
Khadgi and Weber 2021; Molina-Bravo et al.
2014; Sargent et al. 2007; Scolari et al. 2021;
Simpson et al. 2017). Similar studies have also
been conducted in black raspberry, although
with fewer examples and none involving asso-
ciation mapping (Bradish et al. 2016a, 2016b;
Bushakra et al. 2013, 2015, 2018; Willman
et al. 2022).

Genomics-assisted Breeding in
Caneberries

The most relevant genomic methods for
raspberry cultivar development are MAS and
genomic selection (GS), or genomic predic-
tion. MAS and GS are commonly used to in-
crease selection efficiency in breeding and to
enable selection for specific traits during
early stages of plant development. They have
been used extensively in many of the staple
crops, particularly wheat and corn (Bassi et al.
2016). MAS uses molecular markers such as
SNPs that are closely linked to specific genes
or mutations of interest to predict the presence
and dosage of a desirable allele in parents or
progeny (Ben-Ari and Lavi 2012). GS uses in-
formation from numerous genome-wide mo-
lecular markers to produce genomic estimated
breeding values for a given trait based on a re-
lated training population, which is then de-
ployed in wider populations (Meuwissen et al.
2001). MAS has thus far been demonstrated to
be well suited for tracking and assessing traits
that are qualitative or controlled by few genes,
whereas GS is better suited for traits that are
highly quantitative and polygenic (Bernardo
2008; Poland and Rutkoski 2016). In red rasp-
berry, MAS has been researched minimally
and limited to tracking P. rubi and RBDV re-
sistance (Ward et al. 2012; Weber et al. 2008).
These studies indicated that it could be a suc-
cessful tool for breeders, but genetic back-
ground effects have prevented the developed
markers from being widely implemented. Ad-
ditional studies are needed to identify markers
that can track these traits reliably. More re-
cently, markers related to P. rubi resistance
and fruit-quality traits were validated for their
use in Scottish breeding programs (Graham
et al. 2011; Jennings et al. 2016).

Research to develop molecular markers
for selecting aphid resistance genes in black
raspberry has begun and is becoming more of
a reality as further genetic information is gen-
erated. Bushakra et al. (2015) developed the
first linkage map for black raspberry and
mapped the location of Ag4 to chromosome 6
using the phenotypic marker Ag4_AphidR.
Bushakra et al. (2018) later mapped Ag5 and
the unnamed gene with this same linkage map
and developed potential molecular markers.
The primers designed for these markers were
SSRs and high-resolution melting (HRM)
markers. Of the 93 primers tested, four were
associated with resistance in a validation set
of parents and three resistant and three sus-
ceptible progeny from 16 families. An HRM
marker, S99_122915_HRM, differentiated re-
sistant individuals from susceptible ones re-
gardless of source (Fig. 8). An SSR marker,
S99_13262, and a presence/absence marker
after agarose gel electrophoresis, S525_111520_
gel, identified resistant individuals with the
unnamed or Ag4 resistance sources. Another
SSR marker, S99_476941, was specific to the
Ag5 source. None of the identified markers
could distinguish between the Ag4 and unnamed
sources of resistance. Given the limited size of
the validation population, Bushakra et al.
(2018) recommended first testing these primers
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on parents before using them to evaluate prog-
eny. The USDA-ARS HCPGIRU breeding pro-
gram has used the HRM marker routinely to
screen black raspberry seedlings for aphid re-
sistance. Most recently, Mulch (2021) con-
ducted differential gene expression analysis
using the whole-leaf transcriptomes of geneti-
cally resistant and susceptible progeny from
three black raspberry mapping populations,
each containing one of the three sources of re-
sistance found by Dossett and Finn (2010)—
Ag4, Ag5, and the undesignated resistance
gene—in response to inoculation with aphids.
Their study found various significantly DEGs
across each of the mapping populations. In the
mapping population with Ag4, significant DEGs
were found on chromosomes 2, 3, 4, and 6. The
mapping population with Ag5 had significant
DEGs observed on chromosomes 1, 2, 4, 5, 6,
and 7. The final population with the undesig-
nated resistance gene had significant DEGs on
chromosomes 1, 2, 3, 6, and 7. The occurrence
of significant DEGs on chromosome 6 provides
additional support for the presence of these re-
sistance genes on chromosome 6 (Bushakra
et al. 2015, 2018). Mulch (2021) suggested
that the other genes may be associated with

general stress response genes. By combining
the information obtained by Bushakra et al.
(2015, 2018) and Mulch (2021), the location
of Ag4, Ag5, and the undesignated resistance
gene can be mapped with greater precision
and can aid in the development of more effi-
cient molecular markers that can be used by
plant breeders to target each locus/gene and to
combine (or “pyramid”) multiple sources of
resistance.

To date, there have been no studies inves-
tigating the use of GS in red raspberry breed-
ing programs. Successful development and
deployment of these methods would benefit
caneberry breeders significantly who are still
relying predominantly on traditional methods
for trait selection. This is particularly true for
traits caused by pests and pathogens such as
P. penetrans, the resistance mechanisms of
which appear to be quantitative, and the ef-
fects of which may not fully manifest during
the earliest years of plant development.

Phenomics Methods in Caneberries

HTP can be important to plant breeders
because these technologies enable rapid

data collection and characterization of traits of
interest in large populations. HTP can include
imaging and environmental sensors, although
investigations and development of data proc-
essing procedures for imaging are discussed
most heavily in the literature (Shakoor et al.
2017). Like genotyping, costs for HTP have
declined in the past 10 years, making these
technologies more accessible.

High-throughput imaging can reduce the
effects of human bias and the time spent phe-
notyping material. This is particularly helpful
for traits that require time-intensive or destruc-
tive assessments. These imaging systems have
variable setups and sensors capable of record-
ing data across infrared (IR) and visible light
spectra (Shakoor et al. 2017). The raw data
produced are generally not useful as traditional
phenotypic measurements, but can be converted
by mathematical modeling into relevant metrics
for assessing plant characteristics and perfor-
mance (Kior et al. 2021). Some of the promi-
nent technologies for automated field-based
imaging include mounted ground-based sys-
tems, unmanned aerial vehicles, and satellites.

To date, there have been few studies that
have investigated or used HTP in red raspberry

Fig. 8. Difference melt curves (top) and normalized melt curves (bottom) produced using the high-resolution melting (HRM) marker S99_122915_HRM.
Green curves correspond to plants carrying at least one resistance gene whereas red curves correspond to susceptible plants. Figures courtesy of Nahla
Bassil and Ryan King, US Department of Agriculture–Agricultural Research Service. RFU 5 relative fluorescence units.
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production. Williams et al. (2017) described a
design for a mounted ground-based system ca-
pable of imaging maturing canes of red rasp-
berry with shortwave IR and visible and near-
IR sensors. This system involved a tractor that
drove along the rows pulling a trolley mounted
with the sensors that captured side images of
the plants, which were used to determine
whether this method could accurately segment
individual plants with hyperspectral imaging
(Williams et al. 2017). Their results ulti-
mately demonstrated they could, and this
was the first report on ground-based segmenta-
tion for a bush crop. It was used again success-
fully to determine whether spectral data could
be used with an existing linkage map and ge-
netic markers for analyzing QTLs associated
with desired biologic traits (Williams et al.
2021). Although its cost-effectiveness for more
obvious phenotypic traits could be argued, the
spectral QTLs also collocated with identified
QTLs of traits that are difficult to phenotype,
such as root damage and root density. The cor-
relation between these traits indicated that
HTP-based imaging could be helpful in pheno-
typing for soilborne pathogens. This has been
reinforced with a recent study by Williams
et al. (2023), who used a hand trolley system
for lateral imaging of plants experiencing dif-
ferent abiotic and biotic stresses in a green-
house. Four treatments were tested on red
raspberry plants in the study: two abiotic stress
treatments of low water availability and high
water availability, and two biotic stress treat-
ments of P. rubi or vine weevil (Otiorhynchus
sulcatus) infestations. The various spectral ratios
examined demonstrated strong correlations to
multiple biophysical traits associated with these
stresses (Williams et al. 2023). One challenge
was that the available methods were not help-
ful in delineating the causal stresses from one
another, and caution was needed to avoid
misidentifying the causal stress.

Other characteristics have been assessed
with different sensing technologies in red
raspberry. Shortly after the publication of the
results of the work by Williams et al. (2017),
Pavlovic et al. (2018) reported the use of a
thermal camera to assess canopy tempera-
tures of red raspberry experiencing different
irrigation and mulching treatments. Many of
the correlations using the crop water stress
index derived from the spectral data, soil
moisture, and yield data resembled the same
correlations for these traits in other crops,
suggesting that this method could be a suitable,
efficient alternative for soil moisture measure-
ments. A ground-based hyperspectral imaging
system different from the ones used by
Williams et al. (2017, 2021, 2023) was used
by Jung et al. (2019) to evaluate the effects of
shade cover types on yield and berry character-
istics of several red raspberry cultivars. Jung
et al. (2019) used an ASD FieldSpecV

R

3
MAX (Malvern Panalytical Ltd., Malvern,
UK) and a Cubert UHD185 (Cubert, Ulm,
Germany) to derive the photochemical reflec-
tance index (PRI), water index, normalized
nitrogen index, and normalized difference
vegetation index (NDVI). Significant differ-
ences in PRIs were observed, but not in other

indices in shade cover treatments. All red rasp-
berry cultivars in the study had greater light
utilization efficiency under shade than their
unshaded counterparts. The initial results dem-
onstrate the promise of using spectral data to
assess red raspberry response to treatments.

In yet another imaging system, red rasp-
berry berry shape and color were assessed
using the automated PSI PlantScreen (TM)
(Photon Systems Instruments, Dr�asov, Czech
Republic) red, green, and blue (RGB) imag-
ing system implemented by the University of
Helsinki as part of a study on floricane yield
and berry quality (Palonen et al. 2021). Seven
cultivars were considered, and it was found
that HTP was an effective tool for evaluating
both berry shape and berry color, but not for
evaluating berry weight. Palonen et al. (2021)
predicted that the colorimetric data provided
by HTP will become increasingly widespread
in coming years for harvest and postharvest
assessments. Similarly, Sudars et al. (2022)
developed a deep neural network model for
recognizing and classifying red raspberry
buds, flowers, and berries at various develop-
ment stages in the field using RGB images;
they have since released the model for public
use.

Recently, Manganaris et al. (2023) pre-
sented the first investigation of the use of ae-
rial remote sensing with drones to predict
flowering and harvesting of select red rasp-
berry cultivars Kweli, Imara, and Wengi in
Cyprus. Ground-based measurements with
soil plant analysis development (SPAD) me-
ters were also collected. Traditional phenotype
data on cane and physiological characteristics
were recorded. The vegetative indices NDVI,
normalized difference red-edge index, and
green NDVI were calculated from remote
data. Preliminary data support that the supe-
rior performance of ‘Kweli’ could be corre-
lated to higher chlorophyll levels recorded
with the SPAD meter, stomatal conductance,
and fluorescence efficiency.

Conclusion

Many historically prominent diseases and
pests of red and black raspberry in the PNW
have been key research and breeding objec-
tives for regional breeding programs since
their inception. Improving our understanding
of the genetics for resistance and tolerance of
these biotic stresses is essential for develop-
ing elite cultivars with resistance to multiple
major pests and diseases. New studies involv-
ing genetic mapping, association mapping,
and genomic prediction are required to pro-
duce low-cost marker assays for selecting
sources of resistance within existing breeding
pipelines. As legislation and public opinion
around chemical management shifts, produc-
tion environments change, and global demand
for small fruit increases, managing these is-
sues effectively and sustainably by breeding
resistant cultivars will be critical for future
production. Developments in genomic and
phenomic technologies present an opportunity
for breeders to provide growers with resilient
cultivars and to address emerging challenges

quickly. Evaluation and validation of these
techniques for measuring biotic stress response
in regional germplasm is needed before they
can be implemented with confidence.

References Cited

Alfonso C, Raposo R, Melgarejo P. 2000. Genetic
diversity in Botrytis cinerea populations on
vegetable crops in greenhouses in south-eastern
Spain. Plant Pathol. 49(2):243–251. https://doi.
org/10.1046/j.1365-3059.2000.00452.x.

Asplen MK, Anfora G, Biondi A, Choi D-S, Chu
D, Daane KM, Gibert P, Gutierrez AP, Hoelmer
KA, Hutchison WD, Isaacs R, Jiang Z-L,
K�arp�ati Z, Kimura MT, Pascual M, Philips CR,
Plantamp C, Ponti L, V�etek G, Vogt H, Walton
VM, Yu Y, Zappal�a L, Desneux N. 2015. Inva-
sion biology of spotted wing Drosophila (Dro-
sophila suzukii): A global perspective and future
priorities. J Pest Sci. 88(3):469–494. https://doi.
org/10.1007/s10340-015-0681-z.

Atwell S, Corwin JA, Soltis NE, Subedy A, Denby
KJ, Kliebenstein DJ. 2015. Whole genome re-
sequencing of Botrytis cinerea isolates identi-
fies high levels of standing diversity. Front
Microbiol. 6:996. https://doi.org/10.3389/fmicb.
2015.00996.

Barbara DJ, Jones AT, Henderson SJ, Wilson SC,
Knight VH. 1984. Isolates of Raspberry bushy
dwarf virus differing in Rubus host range. Ann
Appl Biol. 105(1):49–54. https://doi.org/10.1111/
j.1744-7348.1984.tb02801.x.

Barnett OW, Murant AF. 1970. Host range, proper-
ties and purification of Raspberry bushy dwarf
virus. Ann Appl Biol. 65(3):435–449. https://
doi.org/10.1111/j.1744-7348.1970.tb05512.x.

Barritt BH. 1971. Fruit rot susceptibility of red rasp-
berry cultivars. Plant Dis Rep. 55(2):135–139.

Barritt BH, Crandall PC, Bristow PR. 1979. Breed-
ing for root rot resistance in red raspberry. J
Am Soc Hortic Sci. 104(1):92–94. https://doi.
org/10.21273/JASHS.104.1.92.

Barritt BH, Crandall PC, Bristow PR. 1981. Red
raspberry clones resistant to root rot. Fruit Var
J. 35(2):60–62.

Bassi FM, Bentley AR, Charmet G, Ortiz R,
Crossa J. 2016. Breeding schemes for the im-
plementation of genomic selection in wheat
(Triticum spp.). Plant Sci. 242:23–36. https://
doi.org/10.1016/j.plantsci.2015.08.021.

Bellamy DE, Sisterson MS, Walse SS. 2013. Quan-
tifying host potentials: Indexing postharvest fresh
fruits for spotted wing Drosophila, Drosophila
suzukii. PLoS One. 8(4):e61227. https://doi.org/
10.1371/journal.pone.0061227.

Ben-Ari G, Lavi U. 2012. Marker-assisted selec-
tion in plant breeding, p 163–184. In: Altman
A, Hasegawa PM (eds). Plant biotechnology
and agriculture: Prospects for the 21st century.
Elsevier, Amsterdam, the Netherlands. https://
doi.org/10.1016/B978-0-12-381466-1.00011-0.

Bernardo R. 2008. Molecular markers and selec-
tion for complex traits in plants: Learning from
the last 20 years. Crop Sci. 48(5):1649–1664.
https://doi.org/10.2135/cropsci2008.03.0131.

Bradish CM, Bushakra JM, Dossett M, Bassil NV,
Finn CE, Fernandez GE. 2016a. Genotyping
and phenotyping heat tolerance in black rasp-
berry (Rubus occidentalis L.). Acta Hortic.
1127:321–324. https://doi.org/10.17660/ActaHortic.
2016.1127.50.

Bradish CM, Fernandez GE, Bushakra JM, Per-
kins-Veazie P, Dossett M, Bassil NV, Finn CE.
2016b. Evaluation of vigor and winter hardi-
ness of black raspberry breeding populations
(Rubus occidentalis) grown in the southeastern

HORTSCIENCE VOL. 60(7) JULY 2025 1193

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-14 via O
pen Access. This is an open access article distributed under the C

C
 BY-N

C
license (https://creativecom

m
ons.org/licenses/by-nc/4.0/). https://creativecom

m
ons.org/licenses/by-nc/4.0/

https://doi.org/10.1046/j.1365-3059.2000.00452.x
https://doi.org/10.1046/j.1365-3059.2000.00452.x
https://doi.org/10.1007/s10340-015-0681-z
https://doi.org/10.1007/s10340-015-0681-z
https://doi.org/10.3389/fmicb.2015.00996
https://doi.org/10.3389/fmicb.2015.00996
https://doi.org/10.1111/j.1744-7348.1984.tb02801.x
https://doi.org/10.1111/j.1744-7348.1984.tb02801.x
https://doi.org/10.1111/j.1744-7348.1970.tb05512.x
https://doi.org/10.1111/j.1744-7348.1970.tb05512.x
https://doi.org/10.21273/JASHS.104.1.92
https://doi.org/10.21273/JASHS.104.1.92
https://doi.org/10.1016/j.plantsci.2015.08.021
https://doi.org/10.1016/j.plantsci.2015.08.021
https://doi.org/10.1371/journal.pone.0061227
https://doi.org/10.1371/journal.pone.0061227
https://doi.org/10.1016/B978-0-12-381466-1.00011-0
https://doi.org/10.1016/B978-0-12-381466-1.00011-0
https://doi.org/10.2135/cropsci2008.03.0131
https://doi.org/10.17660/ActaHortic.2016.1127.50
https://doi.org/10.17660/ActaHortic.2016.1127.50


US. Acta Hortic. 1133:129–134. https://doi.org/
10.17660/ActaHortic.2016.1133.19.

Bristow PR, Barritt BH, McElroy FD. 1980. Reac-
tion of red raspberry clones to the root lesion
nematode. Acta Hortic. 112:39–46. https://doi.
org/10.17660/ActaHortic.1980.112.5.
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