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Abstract. Historically, leaf tissue standards have been developed and used to interpret
foliar tissue analyses for the majority of horticultural crops to diagnose nutrient dis-
orders. However, leaf tissue standards for petunia (Petunia 3hybrida) are based on
survey concentrations from small datasets. This study presents a novel method to cre-
ate data-driven nutrient interpretation ranges by fitting models to provide more re-
fined ranges of deficient, low, sufficient, high, and excessive for 11 essential elements
based on 1420 data points. Data distributions were analyzed by fitting normal,
Gamma, and Weibull distributions. Additionally, four machine learning algorithms
J48 (a decision tree classifier), random forest (RF), which is a learning method that
uses multiple decision trees, sequential minimal optimization (SMO), which is an opti-
mization technique for support vector machines, and multilayer perceptron (MLP),
which is a type of artificial neural network, were examined to determine if machine
learning models could accurately classify foliar tissue analysis samples into the cor-
rect interpretation range. For all examined essential nutrients, J48 or RF yielded the
highest classification accuracy compared with MLP or SMO. This study established
the novel use of machine learning for interpreting petunia foliar nutrient analysis re-
sults with a higher accuracy rate than that of traditional statistical methods.

The economic goal of growers is to pro-
duce high-quality plants while minimizing

inputs such as fertilizers; however, nutrient
deficiencies can occur if the nutrients are not
supplied to the plant in available forms, at the
required concentration, or at the appropriate
time (Alem et al. 2015; van Iersel et al.
1998). Nutrient deficiencies can stunt plant
growth, increase production time, and induce
visual symptoms (Henry 2017). Nutrient toxic-
ities, as a result of surplus fertilizer, can result
in excess salinity, visual toxicity symptoms,
and stunted plant growth (Alem et al. 2015).
Qualitative and quantitative approaches for
fertilization management exist (van Iersel
et al. 1998). Although qualitative approaches,
such as visual nutrient toxicity or deficiency
symptoms, rely on physical changes already
occurring within the plant, quantitative ap-
proaches, such as foliar tissue analyses, can
detect variations before visual differences oc-
curring. However, optimal foliar tissue nutri-
ent analysis concentrations vary depending

on the plant species and growth stage (Bryson
and Mills 2015; Reuter and Robinson 1997).

Currently, foliar tissue analysis standards
for horticultural crops are based on the survey
approach (SA), which consists of sampling
healthy plants to set a baseline standard for
foliar nutrient concentrations for an actively
growing healthy plant (Bryson and Mills
2015). Although this approach is limited be-
cause of the small sample used to establish
the baseline, many analytical laboratories
rely on standards set by the SA to evaluate
and diagnose foliar samples submitted by
growers and technical specialists for many
specialty crops.

More robust evaluation standards that ac-
count for varying growing conditions and
plant development stages are needed. Expan-
sion from the SA has led to several refined
evaluation methods, including the critical
value approach (CVA) (Sumner 1990), com-
positional nutrient diagnosis (CND) (Parent
and Dafir 1992), diagnosis and recommen-
dation integrated system (DRIS) (Beaufils
1973), and sufficiency range approach (SRA)
(Soltanpour et al. 1995). All four approaches
have advantages and limitations when used to
evaluate and diagnose plant nutrient status.
The SRA provides an assessment of individ-
ual nutrient concentrations (deficient or suffi-
cient) but does not explicitly account for
interactions between nutrients that the DRIS
provides. Although these methods provide a
baseline for creating reference values for spe-
cialty crops, the limited sample numbers used
with these methods can negatively impact the
accuracy of the values identified by these
methods.

To develop an interpretation model using
the SRA that includes deficient, low, suffi-
cient, high, and excessive ranges, an optimal
distribution curve must be identified or estab-
lished. However, most data tend to be skewed,
thus making the normal distribution curve less
suitable. Two distribution curves that account
for possible skewness are Gamma and Weibull
(Cera et al. 2022; Mhango et al. 2021; Slaton
et al. 2021; Weibull 1951). Individual datasets
should be evaluated using multiple distribu-
tions to determine the one that most accu-
rately depicts the data.

Plant diagnostics can be challenging, even
with well-defined leaf tissue concentration
ranges, because of potential errors that can
occur when interpreting laboratory analysis
results. Machine learning (ML) provides the
ability to use large datasets to understand and
interpret data-intensive processes in the agri-
cultural field (Liakos et al. 2018). Machine
learning has already been used in crop man-
agement for yield prediction (Amatya et al.
2016; Ramos et al. 2017), disease detection
(Chung et al. 2016; Ebrahimi et al. 2017),
weed detection (Pantazi et al. 2016, 2017),
and nutrient deficiency detection through im-
aging (Li et al. 2022; Shi et al. 2021). Using
industry-wide standardized published labora-
tory analysis methods for foliar nutrient anal-
yses allows ML to be used for diagnostics
regardless of onsite equipment. This research
aimed to use the foliar interpretation ranges
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developed to create ML algorithms that can
aid interpretation using readily available fo-
liar tissue concentration testing methods.

A variety of ML algorithms with various
architectures have been developed for different
purposes. Decision trees, such as J48, use
branches to group data into subpopulations
while creating associated tree graphs (Ennaji
et al. 2023). Each branch of a tree uses a pair-
wise comparison for a particular attribute
(Mingers 1989). Similarly, random forest (RF)
is a ML decision tree-based algorithm that
combines a sequence of trees for better predic-
tive performance (Ennaji et al. 2023). In con-
trast, artificial neural networks (ANNs) such
as multilayer perceptron (MLP) use radial ba-
sis function networks, backpropagation, and
perceptron algorithms to build predictive mod-
els for regression or classification (Griffel
et al. 2023). Support vector machines, such as
sequential minimal optimization (SMO), were
originally designed for binary classification
by creating a linear separation hyperplane
(Keerthi et al. 2001). To improve foliar tis-
sue nutrient interpretation standards for petu-
nia (Petunia �hybrida), refined evaluation
ranges were first established for the following
11 essential elements commonly analyzed us-
ing leaf tissue analysis: nitrogen (N), phos-
phorus (P), potassium (K), calcium (Ca),
magnesium (Mg), sulfur (S), boron (B), cop-
per (Cu), iron (Fe), manganese (Mn), and
zinc (Zn). In addition, creating an automated
system to evaluate leaf tissue analysis results
would increase the accuracy of diagnosing
nutrient disorders. Therefore, the study objec-
tives were to develop more robust leaf tissue
classification ranges and create an automated
ML-based classification system for petunia
tissue nutrient interpretation.

Materials and Methods

Sample collection. Foliar tissue analysis
samples were obtained from controlled fede-
ral or university research studies conducted
in North Carolina or Ohio and supplemented
with samples from public and commercial
analytical laboratories. Leaf tissue samples
(n 5 1420) included only petunias grown in
controlled environments, such as green-
houses and growth chambers (Table 1), and
were analyzed for each study based on the
cited procedures. Because of the short pro-
duction time used with bedding plant pro-
duction, only one set of foliar nutrient
standards for the entire approximately 45-d
to 60-d production cycle was developed.

Nutrient distribution statistical analysis.
Distribution analyses were conducted using
R studio (version 4.1.1; R Foundation for Sta-
tistical Computing, Vienna, Austria). Each ele-
ment was modeled independently, and outliers
that were extremely excessive (greater than bi-
ologically feasible or a significant break in the
population) were removed before further anal-
yses were performed. Data were fit to normal,
Gamma, and Weibull distributions, and the
three statistical distributions were compared
(Cera et al. 2022; Mhango et al. 2021; Slaton

et al. 2021; Weibull 1951). Corresponding
P values that described the fitness of the data
in the statistical distributions were calculated
based on the Shapiro-Wilk test for normality
(normal and Gamma distributions) or the
Kolmogorov-Smirnov test (Weibull distri-
bution). The optimal distribution was selected
based on the lowest Bayesian information
criterion (BIC) value and visual fitness. Re-
sults were illustrated using ggplot2 (Wickham
2011) in R. For macronutrients (N, P, K,
Ca, Mg, and S), the deficiency range was
established based on the left tail of a 95%
distribution (lowest 2.5% of the samples
that contained >40 observations), the low
range corresponded to the region between
the lowest 2.5% of the observations and the
0.25 quantile, the sufficiency range was the
area between the 0.25 and 0.75 quantiles,
the high range corresponded to the region
between the 0.75 quantile and the highest
2.5% of the observations, and the excessive
range was based on the right tail of a 95%
distribution (highest 2.5% of the samples
that contained >40 observations). For mi-
cronutrients (B, Cu, Fe, Mn, and Zn), the

deficiency range was established based on the
left tail of a 90% distribution (lowest 5% of
the samples), the low range corresponded to
the region between the lowest 5% of the ob-
servations and the 0.25 quantile, the high
range corresponded to the region between the
0.75 quantile and the highest 5% of the obser-
vations, and the excessive range was based on
the right tail of a 90% distribution (highest 5%
of the distribution).

Machine learning algorithm development.
Foliar tissue concentrations were classified us-
ing the Waikato Environment for Knowledge
Analysis (WEKA) (version 3.8.3, The Uni-
versity of Waikato, Hamilton, New Zealand,
https://www.cs.waikato.ac.nz/ml/weka/).
Within each element, samples were individu-
ally assigned to one of five nutrient classifica-
tion ranges (deficient, low, sufficient, high, or
excessive) based on ranges established by the
nutrient distribution curves. The single ele-
ment being classified was assigned the corre-
sponding interpretation range and used as the
class variable. Then, two decision trees (J48
and RF) and four different pattern-recognition
ML algorithms were used to analyze the

Table 1. Sources of petunia leaf tissue nutrient data used in the development of the sufficiency range
approach (SRA) distribution model.

Source Sample size Sample type Notes/reference
North Carolina Department of

Agriculture Laboratory
151 Diagnostic Grower submitted diagnostic and

predictive samples (unpublished)
North Carolina State University 120 Research Unpublished electrical conductivity

rate study
North Carolina State University 395 Predictive Grower survey samples
North Carolina State University 52 Researchi Phosphorus rate study.

Henry et al. (2016)
US Department of Agriculture-

Agricultural Research Service
702 Researchii Boldt J, unpublished and

published data
i Citations of leaf tissue analysis methods used for data: see Henry et al. (2016)
ii Multiple published and unpublished studies: see Boldt (2018), Boldt et al. (2018), Boldt and Altland
(2019), and Boldt and Altland (2021).

Fig. 1. Distribution of nitrogen (N) foliar concentrations in petunia (n 5 1420) modeled using normal,
Gamma, and Weibull distributions. Interpretation ranges based on the Gamma distribution define
the following four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high
(S-H), and high to excessive (H-E), which correspond to N concentrations of 3.20%, 4.42%, 5.99%,
and 7.80%, respectively. Previously reported N sufficiency and deficiency ranges are based on stud-
ies by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.
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dataset: an SMO, an SVM, an MLP, and an
artificial neural network (ANN) (Witten
and Frank 2005).

The ML algorithms were compared based
on whether they could correctly classify a
foliar nutrient concentration interpretation

range. To create a model specific to each of
the examined nutrients, all 11 essential ele-
ments from the dataset (N, P, K, Ca, Mg, S,
B, Cu, Fe, Mn, and Zn) were ranked based
on Shannon entropy (information gain) in
the dichotomous classification assignment
by SVMs (Eibe et al. 2016; Keerthi et al.
2001). Then, information gain ranking was
used to identify those elements that were
most relevant to the assignment of each ele-
ment to a classification range to determine
the inclusion order. Reduction of data di-
mensionality for each ML algorithm was
performed by the sequential exclusion of
elements least relevant to the class assign-
ment until one element was remaining. This
step eliminates the overfitting of the ML
classifiers. To identify the minimum num-
ber of elements required for classification
of foliar concentration patterns, each ele-
ment that contributed an information gain
value >0.0 was removed independently.
This step identified the underfitting of the ML
classifiers. The point of optimal classification
was determined to be the least number of ele-
ments that yielded the greatest percentage of
correctly classified instances.

Class assignment of all ML algorithms
was evaluated independently by two cross-
validation strategies. The first was a percentage

Table 2. Percent correct classification (PCC) of nitrogen (N) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-validation
methods (10-fold and 66% split). Models were first run using N alone, and then they progressively incorporated additional elements until all 11 were included.
PCC represents the percentage of samples correctly classified based on the N concentration, indicating the model’s ability to accurately determine the N classi-
fication of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
N Cu Zn Mn Ca Fe Mg S P K B

MLP 10-fold 92.46 92.25 92.54 95.28 94.86 97.04 94.23 94.58 93.94 94.01 90.85
66% Split 91.10 90.06 94.00 93.17 93.58 89.86 89.65 92.96 90.68 88.62 89.65

SMO 10-fold 86.69 86.07 85.85 85.92 85.49 85.56 85.21 84.72 84.51 85.14 84.79
66% Split 81.57 81.57 81.99 81.78 81.78 81.99 82.19 81.16 80.75 79.71 80.12

J48 10-fold 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79
66% Split 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79

RF 10-fold 99.72 99.72 99.72 99.72 99.72 99.72 99.51 99.72 99.58 99.37 99.44
66% Split 99.59 99.59 99.59 99.59 99.59 99.38 99.17 99.59 99.17 99.38 99.38

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 2. Phosphorus (P) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following
four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and
high to excessive (H-E), which correspond to P concentrations of 0.20%, 0.45%, 0.78%, and
1.09%, respectively. Previously reported P sufficiency and deficiency ranges are based on studies
by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 3. Percent correct classification (PCC) of phosphorus (P) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-
validation methods (10-fold and 66% split). Models were first run using P alone, and then they progressively incorporated additional elements until all
11 were included. PCC represents the percentage of samples correctly classified based on the P concentration, indicating the model’s ability to accu-
rately determine the P classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
P Mg N Ca Mn Fe Cu S B K Zn

MLP 10-fold 92.46 92.82 92.39 93.03 92.18 92.68 94.51 92.82 92.11 92.96 92.11
66% Split 92.55 91.10 95.24 92.13 92.34 95.24 92.75 95.03 94.41 92.34 93.79

SMO 10-fold 83.87 85.14 84.86 85.14 84.93 84.86 84.51 85.35 84.51 85.35 85.42
66% Split 86.34 85.51 86.54 85.51 85.92 85.92 85.92 86.13 86.54 86.13 86.13

J48 10-fold 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
66% Split 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

RF 10-fold 100.00 100.00 100.00 100.00 100.00 99.93 99.86 100.00 99.86 99.79 99.65
66% Split 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.79 99.79

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.
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split, whereby 66% of the total data were ran-
domly used for training and the remaining
34% of the data were used for testing. The sec-
ond cross-validation was a stratified hold-out
(n-fold) method with 10-fold data, with nine-
fold of the randomized foliar concentration
data used for training and one-fold used for
testing. This was repeated eight times so
that all replicate samples were used at least
once for testing and the average model per-
formance was recorded for each algorithm
evaluated.

The performances of the four ML algo-
rithms, SVM, MLP, and two decision trees
were determined using the percentage cor-
rect classification (PCC) during the cross-
validations. The PCC indicates the likeli-
hood that each sample could be accurately
assigned to the respective nutrient category
based on the foliar nutrient concentration
data provided. Kappa statistics and receiver-
operating characteristic scores were also

recorded. Any kappa statistic >0 and receiver-
operating characteristic score >0.5 indicated
that the ML classifier performed better than
random chance.

Results and Discussion

Nitrogen. Of the examined models, the
Gamma distribution provided the best repre-
sentation of the N foliar concentrations be-
cause it had the lowest BIC value and visually
represented the tails of the data (Fig. 1). A
recommended sufficiency range of 4.42% to
5.99% N narrowed the previously recom-
mended range of 3.85% to 7.60% N reported
by Bryson and Mills (2015). The lowest 2.5%
of the represented samples yielded a deficiency
value of 3.20% N, which encompassed the pre-
viously reported deficiency value of 2.05% N
reported by Pitchay et al. (2002). Although N
toxicity is rare and values have not been re-
ported for petunia, toxicity can occur when

high concentrations of ammonium (NH4
1) are

supplied and temperatures are low (<20 �C) or
excessive (>40 �C), the substrate is water-
logged, or a substrate pH is <5.6 (Handreck
and Black 2002). Luxury consumption of N
can inhibit flowering and induce potential an-
tagonistic relationships with other essential
nutrients (Marschner 1995). This work estab-
lished that an excessive concentration was
>7.80% N and offered an initial value for fu-
ture refinement.

All ML algorithms for N yielded a PCC
>79.71%, which was a large increase over
the random chance of 20% (Table 2). How-
ever, J48 provided the best classification of N
with a minimum PCC of 99.79% (Table 2).
The MLP yielded a PCC range of 88.62%
to 97.04%, and the SMO algorithm yielded
a range between 79.71% and 86.69%.
A decision tree containing four to 10 ele-
ments would provide the greatest PCC
while accounting for the reported interaction
of N � K.

Phosphorus. Phosphorus foliar concentra-
tions were best represented using a Weibull
distribution (Fig. 2). Although a smaller BIC
value was achieved by the normal distribu-
tion, the Weibull distribution provided a bet-
ter representation of the left and right tails of
the sample data. Based on the Weibull distri-
bution, a recommended sufficiency range of
0.45% to 0.78% P would narrow the previ-
ously reported sufficiency range of 0.47% to
0.93% P recommended by Bryson and Mills
(2015). Additionally, a deficiency range of
<0.20% P encompassed the previously re-
ported deficiency value of 0.07% P (Pitchay
et al. 2002). Although P toxicity in petunia
has not been reported, a P foliar concentration
exceeding 2% can be considered toxic for
most species (Marschner 1995). Additionally,
excessive P concentrations can antagonize
the uptake of Cu, Fe, and Zn. The Weibull
distribution established >1.09% P as exces-
sive for petunia.

The P foliar tissue concentrations were
best classified by the decision tree algorithms
J48 and RF, which yielded minimum PCCs
of 99.85% and 99.65%, respectively, for both
cross-validations (Table 3). The SMO yielded

Fig. 3. Potassium (K) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following
four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and
high to excessive (H-E), which correspond to K concentrations of 2.45%, 4.49%, 6.63%, and
8.45%, respectively. Previously reported K sufficiency and deficiency ranges are based on studies
by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 4. Percent correct classification (PCC) of potassium (K) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-
validation methods (10-fold and 66% split). Models were first run using K alone, and then they progressively incorporated additional elements until all
11 were included. PCC represents the percentage of samples correctly classified based on the K concentration, indicating the model’s ability to accu-
rately determine the K classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
K S Mn Cu Mg Ca N P Zn B Fe

MLP 10-fold 95.56 95.63 95.42 95.28 95.28 95.28 94.72 94.86 95.35 95.63 94.01
66% Split 93.58 94.00 94.20 92.96 94.10 93.79 93.58 94.00 92.13 93.17 91.20

SMO 10-fold 95.85 93.17 90.63 90.14 90.00 89.01 88.59 88.45 87.75 88.17 88.17
66% Split 93.37 91.72 89.44 89.86 89.44 88.82 86.75 86.96 87.75 87.16 86.75

J48 10-fold 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72
66% Split 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79

RF 10-fold 99.86 99.86 99.86 99.86 99.79 99.79 99.65 99.79 99.79 99.72 99.51
66% Split 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.17 99.17 98.34

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.
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the lowest PCC (approximately 85.48%) av-
eraged across the two cross-validation meth-
ods (Table 3). Using an RF algorithm that
contained between seven and 11 elements
(Table 3) allowed for a very high PCC

(>99.65%) while still accounting for reported
antagonistic interactions of P � K, P � Cu,
P � Fe, and P � Zn (Marschner 1995).

Potassium. A Weibull distribution yielded
a smaller BIC value than that of the normal

and Gamma distributions for K foliar concen-
trations (Fig. 3). A recommended sufficiency
range of 4.49% to 6.63% K would narrow the
previously reported sufficiency range of 3.13%
to 6.65% K (Bryson and Mills 2015). A
deficiency range of <2.45% K encompassed
the previously reported deficiency value of
0.69% K reported by Pitchay et al. (2002).
The threshold for excessive K was established
at 8.45% K. When K foliar concentrations
become excessive, antagonistic interactions
with Ca, Mg, and B have been observed
(Marschner 1995). High K levels can com-
pete with Ca and Mg for uptake, potentially
leading to deficiencies that affect cell wall
stability, enzyme activation, and photosyn-
thetic efficiency (Marschner 1995).

All algorithms yielded a PCC classifica-
tion >86.75% when additional elements,
other than K, were incorporated (Table 4).
However, similar to other elements, SMO

yielded the lowest PCC when compared with
J48, RF, and MLP. As additional elements
were incorporated in the SMO model, a gen-
eral negative trend for PCC was observed
(Table 4). This suggested that a reduction of
data dimensionality is required to achieve
the greatest accuracy while also preventing
underfitting. J48 achieved the greatest PCC
(99.76%) when averaged across the 66%
split and for the 10-fold cross-validation
(99.79%), and it could be reduced to in-
clude four to eight elements to account for
nutrient interactions while still achieving a
PCC >99% (Table 4).

Calcium. Calcium foliar concentrations
were best represented by the Gamma distri-
bution, which yielded the smallest BIC value
of the three models (Fig. 4). A sufficiency
range of 1.09% to 1.89% Ca would decrease
and narrow the previously reported suffi-
ciency range of 1.20% to 2.81% Ca (Bryson
and Mills, 2015). The Ca deficiency foliar
concentration threshold of 0.58% Ca encom-
passed a previously reported value of 0.32%
Ca (Pitchay et al. 2002). There are no pub-
lished excessive or toxic Ca values for petu-
nia. However, luxury consumption of Ca can

Fig. 4. Calcium (Ca) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following
four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and
high to excessive (H-E), which correspond to Ca concentrations of 0.58%, 1.09%, 1.89%, and
2.93%, respectively. Previously reported Ca sufficiency and deficiency ranges are based on studies
by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 5. Percent correct classification (PCC) of calcium (Ca) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-
validation methods (10-fold and 66% split). Models were first run using Ca alone, and then they progressively incorporated additional elements until
all 11 were included. PCC represents the percentage of samples correctly classified based on the Ca concentration, indicating the model’s ability to ac-
curately determine the Ca classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
Ca Mn Fe Mg N S P Cu Zn K B

MLP 10-fold 94.79 94.51 95.07 96.55 95.92 95.07 94.23 94.44 93.87 93.10 93.38
66% Split 95.65 96.48 95.65 94.82 94.41 94.41 94.00 95.45 93.79 92.75 94.20

SMO 10-fold 92.75 92.25 92.32 92.75 92.39 93.03 93.54 85.35 92.32 91.20 91.27
66% Split 92.96 91.51 91.72 92.32 91.72 91.30 91.10 86.13 90.68 89.44 89.44

J48 10-fold 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.86 99.00 98.79 99.79
66% Split 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

RF 10-fold 99.79 99.79 99.79 99.79 99.79 99.79 99.65 99.79 99.51 99.58 99.58
66% Split 100.00 100.00 100.00 100.00 100.00 99.79 100.00 100.00 99.79 99.38 98.55

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 5. Magnesium (Mg) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma,
and Weibull distributions. Interpretation ranges based on the Gamma distribution define the follow-
ing four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H),
and high to excessive (H-E), which correspond to Mg concentrations of 0.25%, 0.52%, 0.97%, and
1.58%, respectively. Previously reported Mg sufficiency and deficiency ranges are based on studies
by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.
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occur when abundant Ca is supplied, and this
may be reflected in the higher previously rec-
ommended range of 1.20% to 2.81% Ca
(Bryson and Mills 2015). Luxury consump-
tion should be monitored for the possibility
of interference with P, K, Mg, Fe, B, Mn, and

Zn uptake (Marschner 1995). Using the
Gamma distribution, the upper 2.5% of
samples set the excessive range threshold at
2.93% Ca (Fig. 4). The proposed excessive
range established an upper threshold to
minimize the occurrence of decreased K

and Mg uptake because of excessively high
Ca foliar concentrations.

Additionally, Ca was best classified by
the decision tree algorithms J48 and RF,
which yielded minimum PCCs of 99.79%
and 99.38%, respectively (Table 5). The
MLP yielded a PCC range of 92.75% to
96.55%, and the SMO algorithm yielded a
PCC range between 85.35% and 93.54%
(Table 5). Although all algorithms yielded
greater than a random chance of 20%, RF
consistently yielded the greatest PCC. An
algorithm that contained between four and
11 elements (Table 5) would account for
known interactions of Ca � Mg, Ca � P,
Ca � K, Ca � Fe, Ca � B, and Ca � Mn
(Marschner 1995).

Magnesium. A Gamma distribution yielded
the lowest BIC compared with that of the other
two examined distributions for foliar Mg (Fig. 5).
The identified sufficiency range of 0.52% to
0.97% Mg was within the previously suggested
sufficiency range of 0.36% to 1.37% Mg
(Bryson and Mills 2015) and offered a refined
range. A deficiency range of <0.25% Mg en-
compassed the reported deficiency concentra-
tion of 0.08% Mg (Pitchay et al. 2002). This
established the first reported excessive Mg
concentration for petunia of 1.58% Mg.

Table 6. Percent correct classification (PCC) of magnesium (Mg) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two
cross-validation methods (10-fold and 66% split). Models were first run using Mg alone, and then they progressively incorporated additional elements
until all 11 were included. PCC represents the percentage of samples correctly classified based on the Mg concentration, indicating the model’s ability
to accurately determine the Mg classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
Mg Ca Mn P B N S Fe Zn K Cu

MLP 10-fold 93.94 94.37 96.06 94.86 94.15 95.07 93.41 92.68 93.31 92.54 92.82
66% Split 91.10 90.89 91.10 91.10 90.68 92.34 91.72 91.51 91.10 94.82 92.34

SMO 10-fold 89.58 89.72 89.43 89.79 90.00 90.00 89.58 89.58 89.37 89.44 89.30
66% Split 86.54 88.41 88.41 87.58 87.37 88.61 87.78 87.58 87.99 87.99 87.99

J48 10-fold 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
66% Split 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59

RF 10-fold 100.00 100.00 100.00 100.00 100.00 99.79 99.72 99.86 99.72 99.72 99.51
66% Split 99.59 99.59 99.59 99.59 99.59 99.59 99.17 99.59 99.59 99.38 98.96

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 6. Sulfur (S) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following
four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and
high to excessive (H-E), which correspond to S concentrations of 0.16%, 0.33%, 0.61%, and
0.98%, respectively. Previously reported S sufficiency and deficiency ranges are based on studies
by Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 7. Percent correct classification (PCC) of sulfur (S) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-validation
methods (10-fold and 66% split). Models were first run using S alone, and then they progressively incorporated additional elements until all 11 were included.
PCC represents the percentage of samples correctly classified based on the S concentration, indicating the model’s ability to accurately determine the
S classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
S Mn B Cu Zn K Ca P Mg N Fe

MLP 10-fold 95.28 89.30 94.93 94.23 94.23 94.08 93.52 92.89 93.59 93.66 92.54
66% Split 92.34 90.27 93.58 93.58 93.79 93.17 92.34 92.55 91.30 91.30 90.68

SMO 10-fold 73.62 73.59 73.03 73.52 75.42 77.96 78.52 79.94 79.37 80.21 80.28
66% Split 75.78 75.16 74.74 74.53 74.47 79.71 79.92 79.30 80.95 81.16 80.95

J48 10-fold 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
66% Split 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

RF 10-fold 100.00 100.00 100.00 100.00 100.00 99.93 99.93 99.93 99.93 99.93 99.86
66% Split 100.00 100.00 100.00 100.00 100.00 99.79 99.59 99.59 99.79 99.38 99.38

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.
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Monitoring Mg foliar concentrations is es-
sential because Mg deficiency disrupts the
loading of sucrose into the phloem (Guo et al.

2016) and excessive foliar Mg concentrations
inhibit photosynthesis and plant growth (Rao
et al. 1987).

The Mg foliar tissue concentrations were
best classified by the decision tree algorithms
J48 and RF and yielded minimum PCCs of
99.59% and 99.17%, respectively, with
J48 consistently yielding an average PCC of
99.79% across both cross-validations regard-
less of the number of elements included in
the model (Table 6). The SMO yielded the
lowest PCC, on average, of approximately
88.72% across the two cross-validation meth-
ods (Table 6). Using an RF algorithm that
contains between four and 10 elements
(Table 6) allows for optimal PCC while
still accounting for reported antagonistic
interactions of Mg � K and Mg � Ca
(Marschner 1995).

Sulfur. Of the examined models, a
Gamma distribution optimally represented S
foliar tissue concentrations (Fig. 6). A recom-
mended sufficiency range of 0.33% to 0.61%
S would narrow the previous sufficiency
range of 0.33% to 0.80% S (Bryson and Mills

2015). Additionally, a deficiency range of
<0.16% S encompassed the previously re-
ported 0.11% S deficiency value at which
visual symptoms were observed (Pitchay
et al. 2002), although no S toxicity values
have been previously reported for luxury
consumption. This study defined >0.98% S
as excessive.

Additionally, S was best classified by the
decision tree algorithms J48 and RF, which
collectively yielded a minimum PCC of
99.38% (Table 7). The MLP yielded a PCC
range of 89.30% to 95.28%, and the SMO
algorithm yielded a range between 73.03%
and 81.16% (Table 5). Although all algo-
rithms developed yields greater than what
was expected with a random chance of
20%, J48 consistently yielded the greatest
PCC across the algorithm types evaluated. A
J48 algorithm containing between four and 11
elements (Table 7) reduced data dimensional-
ity while still providing a similar PCC.

Iron. The Fe foliar tissue concentrations
were best represented by a Gamma distribu-
tion, which yielded the smallest BIC values

Fig. 7. Iron (Fe) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and Weibull
distributions. Interpretation ranges based on the Gamma distribution define the following four transi-
tion zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and high to exces-
sive (H-E), which correspond to Fe concentrations of 51.2, 76.1, 123.0, and 166.5 mg·kg�1,
respectively. Previously reported Fe sufficiency and deficiency ranges are based on studies by Pitchay
et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 8. Percent correct classification (PCC) of iron (Fe) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-validation
methods (10-fold and 66% split). Models were first run using Fe alone, and then they progressively incorporated additional elements until all 11 were in-
cluded. PCC represents the percentage of samples correctly classified based on the Fe concentration, indicating the model’s ability to accurately determine
the Fe classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
Fe Mn Ca Cu P N B Mg S K Zn

MLP 10-fold 68.31 69.23 70.70 68.31 69.65 70.28 69.86 68.52 69.15 68.87 67.75
66% Split 81.57 76.81 81.57 78.67 79.30 77.64 82.82 79.92 78.88 75.98 74.53

SMO 10-fold 47.32 50.92 60.42 60.70 60.00 60.35 61.90 62.25 63.10 62.18 62.11
66% Split 45.55 45.55 60.66 61.08 60.66 59.42 61.28 61.49 60.87 60.25 60.04

J48 10-fold 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72 99.72
66% Split 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59

RF 10-fold 99.86 99.86 99.79 99.86 99.79 99.72 99.65 99.65 99.65 99.51 99.30
66% Split 99.79 99.79 99.79 99.79 99.79 99.59 99.59 99.59 99.79 99.59 99.79

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 8. Manganese (Mn) foliar concentrations of petunia modeled using normal, Gamma, and Weibull
distributions. Interpretation ranges based on the Gamma distribution define the following four tran-
sition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and high to ex-
cessive (H-E), which correspond to Mn concentrations of 19.2, 44.2, 108.4, and 180.2 mg·kg�1,
respectively. Previously reported Mn sufficiency and deficiency ranges are based on studies by
Pitchay et al. (2002) and Bryson and Mills (2015) and are reported for comparison.
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compared with those of normal and Weibull
distributions (Fig. 7). Based on this curve, a
recommended sufficiency range of 76.1 to
123.0 mg·kg�1 Fe would decrease the current
suggested Fe range of 84 to 168 mg·kg�1 Fe
(Bryson and Mills 2015). The Fe deficiency

foliar concentration of 51.2 mg·kg�1 Fe,
which was based on the lowest 5% of the
samples, was lower than 55.1 mg·kg�1 Fe,
which was reported previously (Pitchay et al.
2002). Petunias are considered Fe-inefficient
and can often experience Fe deficiency when

substrate pH is high (>6.5) even if adequate
Fe is supplied to the root zone (Smith et al.
2004). Currently, there are no reported values of
visual Fe toxicity symptoms in petunia; however,
a decrease in plant dry weight when the Fe foliar
concentrations were greater than 757 mg·kg�1

Fe has been reported (Lee et al. 1992). This
value is well above the excessive zone of
>166.5 mg·kg�1 Fe established by our research.

Additionally, Fe was best classified by
the decision tree algorithms J48 and RF,
which both yielded a minimum PCC of
99.30% (Table 8). The MLP yielded a PCC
range of 68.31% to 82.82%, and the SMO
algorithm yielded a range of 45.55% to
63.10% (Table 8). Although all algorithms
developed PCCs greater than the 20% ex-
pected with random chance, RF consis-
tently yielded the greatest PCC across the
four algorithms evaluated. An algorithm
containing five elements (Table 8) would
allow for a reduction of data dimensionality
while accounting for the known interaction
of Fe � P (Marschner 1995).

Manganese. Of the three examined mod-
els, a Gamma distribution had the lowest BIC
and the best visual representation of the tails
(Fig. 8). A recommended sufficiency range of
44.2 to 108.4 mg·kg�1 Mn narrowed and

Table 9. Percent correct classification (PCC) of manganese (Mn) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two
cross-validation methods (10-fold and 66% split). Models were first run using Mn alone, and then they progressively incorporated additional elements
until all 11 were included. PCC represents the percentage of samples correctly classified based on the Mn concentration, indicating the model’s ability
to accurately determine the Mn classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
Mn Ca Fe B Mg Cu N S K Zn P

MLP 10-fold 96.20 96.06 95.07 95.07 94.86 95.28 94.08 94.51 93.52 93.45 93.45
66% Split 97.52 97.10 95.65 94.41 96.27 95.86 94.82 94.00 93.37 94.00 92.55

SMO 10-fold 88.59 83.03 83.03 84.72 84.30 84.79 85.14 85.99 86.27 86.20 86.20
66% Split 91.30 79.71 79.71 82.40 81.57 81.16 82.40 85.09 84.47 84.27 84.68

J48 10-fold 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79
66% Split 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

RF 10-fold 99.79 99.79 99.79 99.79 99.79 99.79 99.72 99.86 99.86 99.79 99.65
66% Split 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.79 99.38 99.17

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 9. Boron (B) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and Weibull
distributions. Interpretation ranges based on the Gamma distribution define the following four transi-
tion zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and high to ex-
cessive (H-E), which correspond to B concentrations of 12.2, 19.4, 33.8, and 47.5 mg·kg�1,
respectively. Previously reported B sufficiency and deficiency ranges are based on studies by Pitchay
et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 10. Percent correct classification (PCC) of boron (B) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-validation
methods (10-fold and 66% split). Models were first run using B alone, and then they progressively incorporated additional elements until all 11 were in-
cluded. PCC represents the percentage of samples correctly classified based on the B concentration, indicating the model’s ability to accurately determine the
B classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
B Mn S Fe Mg K Cu N P Ca Zn

MLP 10-fold 96.13 96.20 94.72 94.58 94.37 94.79 94.15 94.01 93.38 94.08 92.46
66% Split 94.62 96.69 95.03 94.20 94.20 93.58 94.20 92.75 90.89 92.55 89.65

SMO 10-fold 85.56 77.39 77.39 77.61 78.31 77.54 77.89 76.62 76.34 76.90 77.18
66% Split 54.45 67.49 68.53 67.91 66.25 66.87 66.87 67.49 68.53 68.74 69.57

J48 10-fold 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
66% Split 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59

RF 10-fold 100.00 100.00 100.00 100.00 100.00 99.86 99.86 99.93 99.86 99.86 99.86
66% Split 99.59 99.59 99.79 99.38 99.38 99.59 99.38 99.59 99.79 99.79 99.38

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.
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lowered the current sufficiency range of 44 to
177 mg·kg�1 Mn suggested by Bryson and
Mills (2015). Additionally, the deficiency
threshold of 19.2 mg·kg�1 Mn encompassed

the critical value of 11.3 mg·kg�1 Mn reported
previously (Pitchay et al. 2002). Although
there are no reported visual Mn toxicity foliar
values for petunia, a decrease in the leaf

chlorophyll concentration when a Mn foliar
tissue concentration of 2560 mg·kg�1 Mn
was observed (Lee et al. 1992). Our research
decreased the transition between high and ex-
cessive zones to >180.2 mg·kg�1 Mn.

The Mn foliar tissue concentrations were
best classified by the decision tree algorithms
J48 and RF. J48 yielded an average PCC of
99.89% across the two cross-validation types,
whereas RF consistently yielded a PCC of
99.74% when averaged across both cross-
validations (Table 9). The SMO yielded the
lowest PCC (approximately 84.31%) aver-
aged across the two cross-validation meth-
ods (Table 9). Using a J48 algorithm that
contains between four and eight elements
will allow for optimal PCC while still ac-
counting for the reported antagonistic inter-
action of Mn � Fe (Marschner 1995) and
reducing data dimensionality.

Boron. The Gamma distribution had the
lowest BIC and best represented the tails and

center compared with the other two examined
distributions (Fig. 9). A recommended suffi-
ciency range of 19.4 to 33.8 mg·kg�1 B nar-
rowed the current recommendation of 18 to
43 mg·kg�1 B (Bryson and Mills 2015). A
deficiency range of <12.2 mg·kg�1 B encom-
passed the deficiency value of 10.3 mg·kg�1

B previously reported (Pitchay et al. 2002).
Lee et al. (1992) reported leaf edge burn
when B foliar concentrations exceeded
651 mg·kg�1 B and reduced flower forma-
tion when B foliar tissue concentrations
exceeded 1051 mg·kg�1 B. Our research
established the transition between high
and excessive zones as >47.5 mg·kg�1 B.

The B foliar tissue concentrations were
best classified by the decision tree algorithms
J48 and RF, which both yielded a minimum
PCC of 99.38%; however, the RF consistently
had less variability in PCC (0.62%) across both
cross-validations (Table 10). The SMO yielded
the lowest PCC (approximately 72.39%) aver-
aged across the two cross-validation methods
(Table 10). Using an RF algorithm that con-
tains 10 elements will allow for optimal PCC
while still accounting for reported antagonistic

Fig. 10. Zinc (Zn) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following
four transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and high
to excessive (H-E), which correspond to Zn concentrations of 22.0, 38.5, 73.3, and 108.2 mg·kg�1, re-
spectively. Previously reported Zn sufficiency and deficiency ranges are based on studies by Pitchay
et al. (2002) and Bryson and Mills (2015) and are reported for comparison.

Table 11. Percent correct classification (PCC) of zinc (Zn) values using four machine learning algorithms (MLP, SMO, J48, and RF) with two cross-validation
methods (10-fold and 66% split). Models were first run using Zn alone, and then they progressively incorporated additional elements until all 11 were in-
cluded. PCC represents the percentage of samples correctly classified based on the Zn concentration, indicating the model’s ability to accurately determine
the Zn classification of deficient, low, sufficient, high, or excessive.

Percent correct classification

Elements included in the model

Algorithm Cross-validation
1 2 3 4 5 6 7 8 9 10 11
Zn Cu N S Mn Ca Mg P K B Fe

MLP 10-fold 92.39 94.15 94.01 94.08 94.15 88.94 93.52 88.29 88.10 87.96 91.06
66% Split 87.37 93.58 88.41 89.65 87.37 87.78 86.13 86.96 86.13 85.92 85.92

SMO 10-fold 86.13 86.06 84.51 84.94 85.21 83.87 83.52 83.24 82.32 82.68 82.68
66% Split 84.89 83.02 81.57 82.40 82.40 79.92 78.09 79.71 77.85 78.88 78.47

J48 10-fold 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
66% Split 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17

RF 10-fold 99.72 99.72 99.65 99.65 99.65 99.58 99.58 99.58 99.65 99.51 99.30
66% Split 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.38 99.38

B 5 boron; Ca 5 calcium; Cu 5 copper; Fe 5 iron; K 5 potassium; Mg 5 magnesium; MLP 5 multilayer perceptron; Mn 5 manganese; N 5 nitrogen;
P 5 phosphorus; RF 5 random forest; S 5 sulfur; SMO 5 sequential minimal optimization; Zn 5 zinc.

Fig. 11. Copper (Cu) foliar concentrations of petunia (n 5 1420) modeled using normal, Gamma, and
Weibull distributions. Interpretation ranges based on the Gamma distribution define the following four
transition zones: deficient to low (D-L), low to sufficient (L-S), sufficient to high (S-H), and high to ex-
cessive (H-E), which correspond to Cu concentrations of 1.4, 3.8, 10.6, and 18.5 mg·kg�1, respectively.
Previously reported Cu sufficiency and deficiency ranges are based on studies by Pitchay et al. (2002)
and Bryson and Mills (2015) and are reported for comparison.
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interactions of B � Ca, B � K, and B � N
(Marschner 1995).

Zinc. A Gamma distribution was used for
Zn foliar concentrations and best represented
the middle and tails of the observations
across all three models; additionally, it
yielded the lowest BIC (Fig. 10). Based
on this distribution, a recommended suffi-
ciency range of 38.5 to 73.3 mg·kg�1 Zn
would narrow the current Zn sufficiency
range of 33 to 85 mg·kg�1 Zn suggested by
Bryson and Mills (2015). The Zn deficiency
foliar concentration of 22.0 mg·kg�1 Zn,
based on the lowest 5% of the samples, in-
cluded the 13.0 mg·kg�1 Zn previously re-
ported (Pitchay et al. 2002). Lee et al.
(1992) reported decreased plant dry weight
and flower development when Zn foliar
concentrations of 1630 mg·kg�1 Zn were
observed. Our research decreases the transi-
tion between high and excessive zones to
>108.2 mg·kg�1 Cu.

The Zn foliar tissue concentrations were
best classified by the decision tree algorithms
J48 and RF. Both yielded a minimum PCC of
99.17%; however, RF yielded a more consis-
tent PCC across both cross-validations because
additional elements were included in the model
(Table 11). The SMO yielded the lowest PCC
(approximately 82.37%) averaged across the
two cross-validation methods (Table 11).

Copper. The Gamma distribution for the
Cu concentration had the lowest BIC and
best represented the tails and center com-
pared with the other two examined distribu-
tions. A recommended sufficiency range of
3.8 to 10.6 mg·kg�1 Cu narrowed the current
recommendations of 3 to 19 mg·kg�1 (Bryson
and Mills 2015) (Fig. 11). A deficiency range
of <1.4 mg·kg�1 Cu is below the reported
deficiency value of 3.5 mg·kg�1 (Pitchay
et al. 2002). Pitchay et al. (2002) reported a
Cu deficiency value in asymptomatic plants
that did not receive Cu fertility after 8 weeks
of growth, which may contribute to the dif-
ference in values. This discrepancy merits ad-
ditional investigation to confirm the critical
Cu deficiency concentration of petunia. The
Cu toxicity symptoms included yellowing, in-
terveinal chlorosis, and decreased plant dry

weight, which were observed in petunia with
a foliar concentration of 149 mg·kg�1 Cu
(Lee et al. 1992). This current research low-
ered the transition between high and exces-
sive zones to>18.5 mg·kg�1 Cu.

Additionally, Cu was best classified by
the decision tree algorithms J48 and RF,
which both yielded a minimum PCC of
99.08% (Table 12). The SMO algorithm
yielded the lowest PCC range of 40.79% to
67.08% (Table 12). While all algorithms
yielded greater than the 20% expected with
random chance, RF consistently yielded the
greatest PCC across all algorithm types. An al-
gorithm containing seven elements (Table 12)
would allow for a reduction of data dimen-
sionality while accounting for the known inter-
action of Cu � Fe (Marschner 1995).

The creation of five nutrient interpretation
ranges is a critical step to providing data-
driven diagnostics. Previous work highlighted
sufficiency ranges or critical values of small
datasets; however, because of the economic
value of petunias, a more refined system was
needed. This study used a larger dataset and fit
appropriate distribution models using an SRA
method to provide more defined ranges be-
yond the sufficiency zone to enable the identi-
fication of samples that are deficient, low,
sufficient, high, or excessive. Additionally,
by using a standard commercial laboratory
analysis, ML can accurately provide diag-
nostics to a wider range of users. Although
all examined algorithms can be used for the
classification of petunia foliar nutrient con-
centrations, their architectures greatly impact
the level of accuracy. The two decision trees
that were evaluated (J48 and RF) routinely
performed better than MLP and SMO. This is
likely because of the decision trees subgroup-
ing architecture compared with SMO, which
is intended for binary classification using a
hyperplane to separate data.

Conclusion

There is a continued need for refined leaf
tissue nutrient standards for horticultural crops.
Previously reported deficiency and sufficiency
ranges, which used included a limited number

of samples, offered an initial baseline but re-
sulted in the need for increased accuracy. A
more refined system was needed to diagnose
nutritional problems in petunia and determine
appropriate corrective procedures. This study
used a larger dataset (n 5 1420) compared
with those previously used (n 5 25 to 30)
and fit appropriate distribution models using
an SRA method to provide more defined
ranges beyond the sufficiency zone and also
identify zones of deficient, low, sufficient,
high, or excessive concentrations. This work
also established that ML algorithms can accu-
rately classify leaf tissue samples and account
for interactions among elements. Decision
trees (J48 and RF) routinely yielded a greater
PCC compared with those yielded by MLP
and SMO for all examined elements, likely
because of the algorithm architecture. Al-
though additional work is needed to confirm
this method for other crop species, this re-
search demonstrated the capabilities of ML
for crop nutrient diagnostics using traditional
tissue analysis methods and the ability to re-
duce errors in the interpretation of leaf tissue
analysis reports.
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