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Abstract. Sweet corn is one of the most widely cultivated vegetable crops in the United
States. Nitrogen plays a critical role in promoting plant growth and development and is
essential for maximizing grain yield and accelerating genetic progress. In this study, we
aimed to evaluate the integration of modern breeding tools into the sweet corn breeding
program to improve nitrogen use efficiency (NUE) traits. A total of 693 inbred lines and
108 hybrids were assessed, with NUE traits measured across three developmental stages
(leaf nitrogen at R1, R3, and R6). All inbred lines were whole-genome resequenced. We
performed a genome-wide association study (GWAS) and implemented a set of genomic
models to predict inbred and hybrid performance. We simulated two traits reflecting
the genetic architecture of NUE traits in a sweet corn pipeline using coalescent theory
to compare genomic selection strategies against a benchmark phenotypic selection sce-
nario. Our results revealed significant genetic variation among inbred lines and hybrids
for most NUE traits, indicating a complex genetic architecture. The GWAS identified
candidate genes potentially associated with NUE. Among the traits evaluated in inbred
lines, R1.LN showed the highest prediction accuracies (0.36-0.38), followed by R3.LN
(0.29-0.33) and R6.LN (0.03—0.06). However, genomic prediction accuracy in the hybrid
population was lower (R3.LN: 0.14). Notably, using molecular markers to optimize
crosses emerged as the most effective strategy for the long-term improvement of NUE
traits. In summary, genomic tools can enhance NUE traits, thus highlighting their po-
tential to improve NUE not only in sweet corn but also in other vegetables and move to-
ward more sustainable production.

Sweet corn (Zea mays L.) is an important
vegetable crop worldwide. In the United
States, it has consistently ranked among the
top vegetables in both harvested area and to-
tal production in recent years (US Depart-
ment of Agriculture 2025). To sustain high
productivity, farmers commonly rely on syn-
thetic nitrogen fertilizers. However, nitrogen
fertilizers are a significant environmental pol-
lutant and require substantial energy to pro-
duce (Wani et al. 2021; Yu et al. 2022).
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Breeding for nitrogen use efficiency (NUE)
traits is important in scenarios in which
breeders seek practices that promote more
sustainable agriculture while reducing envi-
ronmental impact. The NUE is defined as
the ratio of grain yield to available nitrogen
(Moose and Below 2009). In other words,
high values of NUE represent plants that are
more efficient in using nitrogen (uptake and
utilization), which could reduce the amount
of synthetic nitrogen needed. Despite its

importance, breeding for such traits in
sweet corn has experienced slow progress.
As is known, increases in field corn yield
have been associated with increases in
NUE (Govindasamy et al. 2023). However,
NUE is not a trait that is directly selected
for in sweet corn breeding programs. Fu-
ture research is needed to understand the
impact of explicitly selecting for NUE in a
breeding program; however, increasing our
understanding of the genetic control of this
trait is a first step toward this goal.

The NUE can be broken down into two
components: uptake efficiency, which refers
to the amount of available nitrogen that the
plant can absorb, and utilization efficiency,
which refers to how efficiently the plant con-
verts the additional nitrogen taken up into
yield (Gheith et al. 2022). On average, plants
take up two-thirds of the total nitrogen by the
time they shift from vegetative to reproductive
growth (stage R1). Thereafter, some uptake
continues (postsilking uptake) while remo-
bilization begins and nitrogen is reallo-
cated from the shoots to reproductive regions
(Coque and Gallais 2007). Selecting for NUE
(and its components) is associated with few
challenges. Phenotyping for NUE is labor-
intensive and time-consuming, and it often
requires destructive sampling (Sanchez et al.
2023). Moreover, NUE is a complex trait
governed by multiple physiological processes
(Gheith et al. 2022). In sweet corn popula-
tions, the genetic architecture underlying this
trait remains poorly understood.

Because of the importance and complexity
of breeding for NUE traits in sweet corn, molec-
ular markers represent a tool to enhance breed-
ing efforts. For instance, markers can be used to
identify genomic regions associated with NUE
traits through a genome-wide association study
(GWAS) (Sanchez et al. 2023). In the GWAS,
a panel of markers is used in a regression-like
analysis with the phenotypic response (the trait
of interest) to determine whether changes in the
markers are associated with changes in the phe-
notype. In addition, they can be incorporated in
genomic selection (GS) models, where histori-
cal phenotypes together with molecular markers
in the same individuals are used in a model to
predict the performance of individuals in a new
set of only genotyped individuals. In the context
of a breeding program, GS models can be used
to increase selective accuracy (i.e., enhance the
certainty of which individuals to select or to dis-
card), reduce phenotyping costs, shorten the
breeding cycle, and guide crosses (Crossa et al.
2021; Marinho et al. 2022).

Our objectives were the following: pro-
vide insights into the genetic architecture
(heritabilities, variance components, and cor-
relations) of NUE traits in a sweet corn popu-
lation; identify genomic regions associated
with NUE traits and potential candidate genes
for those traits; apply genomic models to
predict the performance of inbreeds and hy-
brids; and evaluate the long-term efficiency
of genomic selection in multitrait frame-
work through stochastic simulations to im-
prove NUE traits.
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Fig. 1. (A) The mating plan used to create the hybrids. Each dotted line represents a parental line, and each dot represents a single hybrid. (B) Genetic diver-
sity within the individuals were analyzed by conducting a principal component analysis based on the markers for the lines and hybrids. (C) Distribution
of nitrogen use efficiency traits. The blue values represent the best linear unbiased estimation for each trait. R1.LN, R3.LN, and R6.LN represent leaf ni-
trogen at stages R1, R3, and R6, respectively. R3.LN-H represents the trait measured in the hybrid population.

Materials and Methods

We used a diverse sweet corn population
genotyped with whole-genome resequencing
and phenotypes of key NUE traits from the
lines and hybrids derived from the population
to build a GWAS model for candidate gene
identification and a genomic model (GS) to
predict the performance of the individuals. In
addition, simulations were conducted to infer
the long-term effects of GS to improve NUE
traits in a sweet corn program.
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Plant material and genotyping

A diversity panel of 693 sweet corn inbred
lines containing tropical and temperate-adapted
materials was tested in this study. A sweet
corn population assembled by Baseggio et al.
(2021) was expanded using germplasm ac-
quired from the US Department of Agriculture
Germplasm Resources Information Network
(GRIN) system, the University of Wisconsin-
Madison Sweet Corn Breeding Program, and
the University of Florida Sweet Corn Breeding
Program. A subset of 49 inbred lines from the
panel were crossed to create 108 unique F; hy-
brids (Fig. 1) that were later used for the field
evaluation. To generate the hybrids, we used
an incomplete North Carolina II crossing
scheme. This was a collaborative effort involv-
ing 24 elite inbred lines from the University of
Florida Sweet Corn Breeding Program and 25
inbred lines from the University of Wisconsin-
Madison Sweet Corn Breeding Program.

For genotyping, DNA was extracted and
sequenced with NovaSeq 2 x 150 bp reads at
a shallow depth (mean depth = 8.45x) to cre-
ate a high-density panel of single-nucleotide
polymorphism (SNP) markers distributed

throughout the genome. Reads were aligned
to the [a453-sh2 reference genome (Hu et al.
2021). Variants (including SNPs and small in-
sertion-deletion polymorphisms) were called
using both GATK (Van der Auwera and
O’Connor 2020) and Freebayes (Garrison and
Marth 2012). The overlapping variants result-
ing from these two methods (47,160,177 var-
iants) were selected and further filtered using
GATK best practices (DePristo et al. 2011)
and by missingness (>30%) and minor allele
frequency (>1%), resulting in a final panel of
28,498,353 million variants (Colantonio et al.
2022).

Experimental design and traits measured

Inbred lines were grown at the University of
Florida Plant Science Research and Education
Unit in Citra, FL, USA, in 2019, while the hy-
brid population was generated from inbreds in
2019 and grown in Citra, FL, USA, in 2021. A
resolvable incomplete block design with two
replications and nine incomplete blocks was
used for the inbred line evaluation, whereas a
resolvable incomplete block design with two
replicates and four incomplete blocks was used
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for hybrids. Genotypes were planted in single-
row plots with 12 plants per row. Plants were
spaced at 7 inches apart, and rows were 36 in-
ches apart. For each trial, seeds were treated
with fungicide, and plots were irrigated and
fertilized with nitrogen at 220 kg/ha.

The leaf nitrogen content was determined
by a combustion analysis of pooled leaf sam-
ples collected from the leaf immediately
above the uppermost ear on three representa-
tive plants per row. Sampling occurred at
three key developmental stages: silking (R1,
referred to as the R1.LN trait), 21 d after pol-
lination or milk stage (R3, referred to as the
R3.LN trait), and physiological maturity (R6,
referred to as the R6.LN trait). This approach
allowed us to track nitrogen content through
plant development, including remobilization
and contribution to yield. A combustion anal-
ysis was conducted by Waters Agricultural
Laboratories, Inc. (Camilla, GA, USA). In
the hybrid population, because of the high
correlation between R1.LN and R3.LN, leaf
nitrogen data were collected only at the R3
stage.

Genetic analysis

A two-stage analysis was implemented to
evaluate the traits (Holland and Piepho 2024).
In the first stage, the restricted maximum likeli-
hood method (REML) and best linear unbiased
prediction (BLUP) procedure (Henderson
1974; Patterson and Thompson 1971) were
used along with the following linear mixed
model:

y=Xb+Zg+Wp+e [1]

where y is the vector of phenotypic data, b is
the fixed effect of repetition and checks in-
side blocks (assumed as fixed) summed with
the overall mean, g is the vector of genotypes
(assumed as random), with g ~ N(O0, (ri,),
where (ri, is the genotypic variance, p is the
vector of blocks (assumed as random), with
p ~ N(0,0?), where o2 is the block variance
and e is the residual effect (random), with
e ~N(0, 02, ), where 2, is the residual vari-
ance. Additionally, X, Z, and W were the in-
cidence matrices for b, g, and p, respectively.
Broad-sense heritability was calculated as the
ratio of genotypic variance to phenotypic var-
iance. For the second stage of the analysis,
we assumed that the genotypic effect was fixed
in the same model described, and best linear
unbiased estimates (BLUEs) were estimated.

The variances of the random effects were
tested using the likelihood ratio test (Rao
1973), as follows:

LRT = —2(logLr — logL), [2]

where logLr and loglL are the logarithm of
the maximum residual likelihood function
of the reduced and full model, respectively.
For the likelihood ratio test, xz statistics
with 1 degree of freedom (df) and 5% prob-
ability of error type I were considered.
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Accounting for spatial trends in the
phenotypic data

Modeling of nongenetic effects was imple-
mented to account for heterogeneity within
the trial. The method allows for spatial auto-
correlations among observations in a row—
column fashion (Gilmour et al. 1997, Stefanova
et al. 2009; Wemer et al. 2024). Five models
were implemented to expand the linear model in
equation 1. The first model (model 1) did not con-
sider any spatial pattern and was implemented as
a benchmark comparison model. Model 1 was
implemented by assuming spatially independent
observations (R =021, ® I.), where I, is the
identity matrix for rows (» x r) and I, represents
the identity matrix for columns (¢ X c¢).

Moving forward, we modeled the spatial
or correlated error. This error captures local
and global trends, such as scale fertility gra-
dients, small changes in soil composition,
small-scale disease/insect damage at the plot
level, and other factors (Coelho et al. 2021;
Gilmour et al. 1997; Stefanova et al. 2009;
Werner et al. 2024), that may affect the ex-
periment under evaluation creating depen-
dency among spatially close plots units. For
such, we shaped spatial correlation among
rows and columns by including the autore-
gressive process of order 1 (ARI1 structure)
(Box et al. 2015). The residual was modeled
as R=072(p,) ® I, and R=0}1, @ X(p,), for
model 2 arnd model 3, respectively, there (ré
represents the spatial dependent or correlated
error, p, and p,. represent the correlations for
rows and columns, respectively, and X, and
¥, represent the first-order autoregressive cor-
relation matrix for columns and rows. Model 4
accounted for correlations among rows and
columns simultaneously, with the residual
structure denoted by RZU%E(,DV) RZ(pe)-

Finally, the inclusion of 2 random error,
or nugget effect, which captures any addi-
tional variation that is not a trend, was used
(Gilmour et al. 1997). In the model, this was
achieved by including an independent or un-
correlated term and accounting for the vari-
ance of the same component (0%) implemented
in model 4, which became model 5. Such a struc-
ture captures any noise, measurement error, or
even intrinsic variability within the plots (ran-
dom, independent, or nonspatially correlated)
and could not be captured by the dependent
structure (Gilmour et al. 1997; Wilkinson et al.
1983).

The best model for each trait was identi-
fied using the Bayesian Information Criterion
(BIC) (Schwarz 1978). Models (from model
1 to model 5) with the lowest BIC for each
trait were assumed as the best models. Only
the experiment from the lines field was mod-
eled. All analyses conducted during the sec-
ond stage used the genetic values generated
by such a model.

Genome-wide association analysis

We hypothesized that genetic variants
could be involved in the expression of NUE
traits. To test this hypothesis, we conducted a
genome-wide association analysis using two
distinct methods. Initially, SNPs with minor

allele frequency (<0.01) were filtered out,
resulting in a set of 16,755,210 variants
(hereafter referred to as the 16M set). The first
method used the R package GAPIT (Wang
and Zhang 2021), with the kinship matrix cal-
culated using the default algorithm in the
FarmCPU model. The analysis was conducted
using a maxLoop threshold of 10 and a QTN
threshold of 10. The second method used
EMMAX (Kang et al. 2008) software to fit
a standard univariate linear mixed model. For
both methods, a Bonferroni-corrected signifi-
cance threshold of 0.05 was applied to identify
candidate SNPs, which represented a threshold
of —loglo(p) = 8.32.

The genome sequence of the maize line
B73 (RefGen_v5) (https://www.maizegdb.org/)
was used as the reference genome for candidate
gene searching. The confidence interval of sig-
nificant SNPs was determined based on the LD
of the population (Colantonio et al. 2022) at
1 MB upstream and downstream of the sig-
nificant SNPs. The confidence interval of
each significant SNP was used to determine the
search scope of candidate genes. First, the SCI-
SPACE AI tool (PubGenius Inc. 2025) was
used to identify genes with known functions re-
lated to nitrogen metabolism by using the
prompt “candidate genes involved in nitrogen
metabolism, uptake, utilization, and mobiliza-
tion in maize,” which returned a description of
genes with known functions related to nitrogen
metabolism alongside cited articles. Any identi-
fied genes found in the artificial intelligence
(AD-provided list were preferred as candidate
genes. Then, studies of NUE-related traits us-
ing the GWAS (He et al. 2020), transcriptom-
ics (Singh et al. 2023; Zhang et al. 2024),
network and regulatory analysis (Plett et al.
2017), and combined omics (Gong et al. 2020;
Liu et al. 2012) suggested by the Al tool were
used to assist with screening candidate genes.

Genomic prediction

We hypothesized that molecular markers
can be used to predict the performance of in-
dividuals for NUE traits. To test this hypothe-
sis, we implemented genomic selection models
and tested their performance in cross-validation
schemes. Genomic selection models were im-
plemented in single-trait and multi-trait ap-
proaches. First, a genomic BLUP (GBLUP)
model was used (VanRaden 2008), which was
represented as follows:

y=n+Za+te [3]

where y is the matrix of BLUEs estimated
in the first stage of the analysis, p is the
overall mean for each trait, Z is the incidence
matrix connecting the observations with the
response variable, a is the vector of additive
genetic effects (assumed as random), where
a~N(0,G®3,), with G as the additive rela-
tionship matrix (VanRaden 2008) and 3, is
the variance—covariance matrix for the genetic
variance, and e is the residual effect (random),
where e ~ N(0,1 ® 3,), with 3, as the re-
sidual variance—covariance matrix of residual
variances, and / is an identity matrix. Then, the
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GBLUP was derived, and it was implemented
in its univariate form.

The second set of models used included
marker-based models, where marker effects
were estimated rather than individual predic-
tions, as in the GBLUP model. Implementa-
tion involved two special models: a univariate
BayesB model (Meuwissen et al. 2001) and a
similar implementation in a multitrait frame-
work called the spike—slab model (Habier
et al. 2011; Pérez-Rodriguez and de los Cam-
pos 2022). Then, the model was implemented
as follows:

y=p+Xpte [4]

where y is the matrix of BLUEs from the
first-stage analysis, u is a vector of trait-
specific overall means, X is the matrix for the
predictors (i.e., the marker matrix for each in-
dividual in y), f is a matrix with the effect of
each SNP (markers by traits), where f§ ~
N(0,07), with o as the variance of the non-

. . 2
zero markers (), which follow an inverse x
distribution, and e as the residual (random),
where e ~ N(0, 02, ), with o2, is the residual
variance.

In a BayesB model, a large proportion of
the SNPs are assumed to have zero effects on the
target trait (1 — r), while a small proportion
(m) is considered with nonzero effects. The
prior distribution of the effect of each SNP
is a mixture of a scaled-t distribution with
probability m and a distribution of point
mass at zero with probability 1 — . In the
spik?s—slab model, p(ms, e, ..., )

o [T e (1 — )™, where oy and o are

théc p}ior shapel and shape2 parameters for
the k™ trait. An unstructured variance—
covariance matrix was chosen for the effect in
this model (2), with the prior a [P(2)] assumed
to be an inverse Wishart distribution.

Using BGLR software, the residual vari-
ance is assigned to a scaled inverted x> prior,
where 02 ~ x%(02|d,,S,), with d, and S,
being the df and the scaling parameter, respec-
tively. Additionally, for Ry, an inverse Wishart
prior was assumed. The overall mean () is
assigned to a flat prior.

A subset of 200,000 SNPs was randomly
selected from the 16M set. The SNPs were fil-
tered out by minor allele frequency (<0.05)
and missingness (>0.80), yielding a total of
101,348 SNPs. The additive realized relation-
ship matrix (VanRaden 2008) was generated
with the aid of the R package AGHmatrix
(Amadeu et al. 2023) and used for model pre-
diction and cross optimization. The missing
values of the markers were replaced by the
mean of the markers, which is the default in
AGHmatrix. For the hybrid combinations, we
recreated the value of the markers of the hy-
brid by summing the values of the parent
markers (Peixoto et al. 2024c¢). In addition, to
summarize and visualize the genetic diversity
of the populations (lines and hybrids), we plot-
ted a principal component analysis using the
prcomp() function from base R.

Cross-validation schemes were used to
evaluate the predictive performance of geno-
mic models for unobserved genotypes. Two
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schemes were implemented. First, cross-valida-
tion scheme one (CV1) involved five-fold cross
validation applied to the population of inbred
lines and repeated 10 times to ensure robust-
ness. The second scheme (CV0) was designed
to reflect a more realistic breeding program sce-
nario in which models are expected to predict
the performance of future hybrids in untested
conditions. Using this approach, all inbred
lines, including the parents, were used to predict
hybrid performance. The prediction accuracy of
the genomic models under each scenario was
assessed by calculating the correlation between
the estimated breeding values and the BLUESs
obtained in the first-stage analysis for each trait.

Cross prediction for NUE traits

We synthetically generated all possible
pairwise crosses among the individuals in the
line panel to develop a mating plan targeting
the improvement of NUE traits. A total of
39,778 crosses were predicted from all combi-
nations of the 546 phenotyped lines. Marker
data and estimated SNP effects were used to
predict the midparent value (MPV) for each F1
combination for both traits—R1.LN and
R3.LN—using the getMPV() function from
the SimpleMating package (Peixoto et al.
2025). Equal weights (1:1) were assigned
to both traits to ensure balanced selection
pressure.

Subsequently, the top 100 crosses were se-
lected to form a mating plan using the select-
Crosses() function under constraints that limited
each parent to a maximum of two crosses and
imposed a co-ancestry threshold of —0.02 to
minimize relatedness. The SNP effects used for
prediction were obtained from the BGLR pack-
age via the Multitrait() function by applying a
spike—slab model (Pérez-Rodriguez and de los
Campos 2022).

Breeding program simulations

We hypothesized that implementing a ge-
nomic selection model for NUE traits would
be the most effective strategy for achieving
long-term genetic gains in the sweet comn
breeding program. Additionally, as previously
described, the use of cross prediction and opti-
mization could enhance the breeding program
by improving the selection of superior crosses
for NUE traits. To evaluate this hypothesis,
we simulated the sweet corn breeding pipe-
line from the University of Florida (for fur-
ther details, see Peixoto et al. 2024b). In the
simulations, various scenarios were imple-
mented, and genetic progress was monitored
across selection cycles.

Briefly, the University of Florida sweet
corn breeding program follows a doubled hap-
loid pipeline with three rounds of hybrid eval-
uation in the target environment. The program
operates across two environments: the target
environment, where hybrid testing occurs over
three consecutive testcross rounds, and an off-
season nursery used for creating the crosses,
hybrids, and DH lines. The program leverages
two pseudo-heterotic groups: one composed
of University of Florida-derived lines and the
other consisting of proprietary material from a

commercial partner. Crosses between these
groups are evaluated as hybrids in the target
environment.

Stochastic simulations of the sweet corn
breeding program. We used the AlphaSimR
package (Gaynor et al. 2021) to simulate
20 years of the sweet corn breeding program
at the University of Florida. The breeding
pipeline, including population sizes and selec-
tion decisions, followed the doubled haploid
scheme thoroughly described by Peixoto et al.
(2024a). To initiate the simulation, a base ge-
nome of 100 individuals was generated using
the Markovian Coalescent Simulator (Chen
et al. 2009). The Maize option was specified
in the species argument to ensure realistic hap-
lotype structures and genome characteristics
representative of maize.

Two traits were simulated to reflect the ni-
trogen content at silking (R1.LN) and 21 d after
pollination (R3.LN) by incorporating additive,
dominance, and genotype-by-environment
(G x E) effects. The traits were modeled
with a genetic correlation of 0.48, mimick-
ing the empirical relationship observed be-
tween R1.LN and R3.LN. The additive
means and variances were set to 4.04/3.04
and 0.5/0.5, respectively, for R1.LN and
R3.LN. Residual variances were set to 0.9
and 0.7, respectively. The G x E variance
for each trait was set to three-times the re-
sidual variance. A dominance degree of
0.93 and dominance variance of 0.2 were
used for both traits. For those parameters
that could not be estimated in the base pop-
ulation (G x E variance and dominance de-
gree), we used previous studies of sweet
corn to incorporate them into the simulated
pipeline (for more details, please see Peixoto
et al. 2024a, 2024b).

Breeding scenarios. Three breeding sce-
narios were simulated and compared. All
were designed to reflect feasible strategies for
improving NUE within the current sweet
corn breeding pipeline.

Phenotypic selection (conventional)

This baseline scenario represents the exist-
ing breeding approach, which relies on trun-
cated phenotypic selection and doubled haploid
production. Parents are selected based on phe-
notypic values and randomly mated to generate
50 crosses at the start of each cycle. This sce-
nario includes a 15 year bumn-in phase, after
which all subsequent scenarios begin from the
same genetic background and continue for an
additional 20 years under the conventional
(Conv) strategy.

Genomic selection

This scenario integrates genomic selection
to replace phenotypic selection. Individuals
are selected at each stage based on estimated
breeding values using a truncated selection
strategy. Genomic prediction is applied to
identify superior DH lines for use as parents
and to advance lines throughout the testcross
stages (see Peixoto et al. 2024a for details).
As in the Conv scenario, 50 crosses are
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produced per cycle by randomly mating se-
lected parents.

Optimal cross selection

Building on the GS framework, this sce-
nario adds an optimized mating plan using ge-
nomic predictions. All DH lines are considered
potential parents. Crosses are predicted using
midparent values computed via the getMPV()
function in the SimpleMating R package, fol-
lowed by optimization with the selectCrosses()
function. Constraints included a maximum of
two crosses per parent and a minimum pairwise
co-ancestry threshold of —0.02 to limit related-
ness and manage inbreeding.

The simulations and scenarios described
were designed to mimic the breeding pro-
cess for the R1.LN and R3.LN traits in the
sweet corn pipeline. These traits are not
only costly to measure but also moderately
correlated (r = 0.48). Because R1.LN data
were not available for the hybrid popula-
tion, we simulated all three scenarios using
selection based solely on the R3.LN trait.
This allowed us to evaluate the indirect re-
sponse in R1.LN and assess the extent of
genetic gain achievable by phenotyping
only at a single developmental stage for
NUE traits.

Breeding value estimation. The genomic
model for the GS and optimal cross selection
(OCS) scenarios was implemented in BGLR
using the BGLR( ) function and the BayesB
model to estimate marker effects. The training
population was updated using a 4 year sliding
window approach and the most recent 4 years
of genotypic and phenotypic data. These indi-
viduals from the training population came from
the parents’ performance and were assessed by
a general combining ability model.

Scenarios comparison. The parameters,
additive population mean and variance, were
tracked to compare the performance of the sce-
narios at each cycle. The measurement was con-
ducted in the parental population in each cycle.

Software

The mixed models (REML/BLUP) for
BLUEs estimation, heritability calculation, and
spatial model correction were implemented in
the R package ASREML (Butler et al. 2017).
The genomic models were implemented in
BGLR (Pérez-Rodriguez and de los Campos
2022, 2014), and the burn-in and number of
iterations were equal to 1000 and 10,000, re-
spectively (for breeding program simulations
and CV1 and CVO0 schemes). The datasets
and scripts to reproduce all analyses can be
found online (https://github.com/Resende-Lab/
NUE-Traits_SweetCorn).

Results

Phenotypic and genotypic variability

The phenotypic distributions of the mea-
sured traits indicated that phenotypic ranges
were consistently broader among inbred lines
compared with hybrids (Fig. 1C). The R6.LN
trait was the only one not showing statistical
significance for the genotypic effect, which
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Table 1. Bayesian Information Criterion (BIC) values for all spatial models implemented.

BIC
Trait Ml M2 M3 M4 M5 H2
RI.LN —748.588 —754.61 —742.385 —748.525 —749.08 0.35 (0.03) *
R3.LN —293.81 —293.509 —289.678 —289.596 —293.55 0.41 (0.03) *
R6.LN —272.149 —300.92 —266.074 —295.069 -319.1 0.03 (0.03) ™

* Significant according to the likelihood ratio test with 5% probability.
ns Nonsignificant according to the likelihood ratio test with 5% probability.

RILN =
R6.LN =

leaf nitrogen content in the RI stage; R3.LN = leaf nitrogen content in the R3 stage;
leaf nitrogen content in the R6 stage. H2 = broad-sense heritability for the best model

based on the BIC and standard deviation (SD; in parentheses).
M1 = model 1; M2 = model 2; M3 = model 3; M4 = model 4; M5 = model 5.

meant that the performance of the lines was
the same for all individuals for that trait. The
broad-sense heritability varied across traits
and populations (range, 0.03-0.41), with
higher values generally observed in the inbred
lines (e.g., R3.LN: 0.41 in lines vs. 0.18 in hy-
brids). This is evidence that the trait is moder-
ately heritable, which, for breeding, opens a
window to select and make genetic pro-
gress. Among the trait correlations, only the
R1.LN-R3.LN pair showed a statistically
significant relationship with a moderate cor-
relation of 0.48.

Regarding the phenotypic assessment mod-
els, model 1, which did not account for spatial
correlation, provided the best fit for R3.LN in
the inbred line population. For R1.LN, model
fit improved with the inclusion of an autore-
gressive structure for rows (model 2). For the
R6.LN trait, the most complex model tested
(model 5), achieved the lowest BIC; therefore,
it was selected as the best-fitting model (Table
1 and Supplemental Material A Fig. 1A).

Genomic regions were found to be
associated with NUE traits

A genome-wide association analysis of
the inbred diversity panel was performed to
identify genomic variants associated with
NUE trait expression. The R6.LN trait was
excluded because of the lack of genotypic
variance captured (Table 1). Based on the
GWAS results of both methods [FarmCPU
and mixed linear model (MLM)], a total of
17 significant SNPs reached the Bonferroni
threshold across chromosomes (Fig. 2).

Using the MLM, there was no significant
SNP from R1.LN, and we identified only one
significant SNP for R3.LN. The significant SNP
for R1.LN is located on chromosome 10. Using
the model FarmCPU, we identified 16 signifi-
cant SNPs, 11 SNPs from RI.LN, and five
SNPs from R3.LN. The significant SNPs for
R1.LN were distributed across chromosomes 1,
3,4, 5,8, and 9, while significant SNPs that
were found for the R3.LN trait were distributed
across chromosomes 2, 4, 6, 7, and 8.

In addition, the quantile-quantile plot,
which assesses how well the SNP P value
distribution fits the null hypothesis of no as-
sociation, showed that most SNPs aligned
closely with the expected distribution along the
diagonal line, with only a few deviating signifi-
cantly (Supplemental Material Fig. 1B). This
suggests that the models effectively corrected

for population structure using the kinship
matrix while also identifying potential true
associations.

Candidate genes were found in
significant GWAS regions

In the FarmCPU model, candidate genes
were identified for three of the 11 significant
SNPs from R1.LN and three of the five signifi-
cant SNPs from R3.LN (Fig. 2, Table 2, and
Supplemental Material B). For the R1.LN trait,
in the confidence interval of chromosome
number 1 (position 222056270), one gene
model was found (Zm00001eb042130). The
gene encodes an aminopeptidase involved in
the peptide catabolic process. Two significant
candidate genes, Zm00001eb002490 and
Zm00001eb339390, were identified as can-
didates within 234 kb of SNP chromosome
number 1 (position 7261188) and 276 kb of
chromosome number 8§ (position 29802249),
respectively. These genes encode protein NLP7
and protein NLP4, respectively, which both
function as DNA-binding transcription factors
involved in controlling nitrate-responsive
gene networks. A significant candidate gene,
Zm00001eb214960, located 169 kb of SNP
chromosome 5 (position 7874493), that enco-
des an ammonium transporter 10, which is
involved in transmembrane ammonium ion
transport, was identified.

For R3.LN traits, we selected a candidate
gene within 80 kb of the SNP in chromosome
4 (position 192007595). The gene model,
Zm00001eb196180, encodes a putative peptide/
nitrate transporter (NRT) involved in the
transmembrane transport of nitrate. We also
found another nitrate transporter gene,
Zm00001eb287950, encoding protein NRT1/
PTR family 3.1, within 336 kb of the SNP in
chromosome 6 (position 157366906). We selec-
tedcandidate gene Zm00001eb326420, within
167 kb of the SNP in chromosome 7 (position
171898601), which encodes a putative indole-3-
acetic acid-amido synthetase GH3.1/GH3.8 and
is involved in amino acid ligase activity.

Using the MLM, only one significant candi-
date gene was associated with the R3.LN trait.
The gene model, Zm00001eb406990, located
within 108 kb of the SNP of chromosome 10
(position 5917216), encodes a cationic amino
acid transporter involved in the transmembrane
transport of amino acids. Overall, candidate
genes included multiple nitrate regulatory genes,
nitrate transporters, and GABA transaminases.
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Fig. 2. Manhattan plot with the single nucleotide polymorphisms (SNPs) associated with nitrogen use efficiency (NUE) traits. Some candidate genes were in-
dicated for each SNP. (A) Plot of the R3.LN trait from mixed linear model (MLM). (B) Plot of the R1.LN trait from the FarmCPU model and (C) plot of
the R3.LN trait from FarmCPU model. The dotted line represents the Bonferroni threshold, which is the same across all three plots (same number of
SNPs used). Note that the scale of the x-axis is different in plots (A), (B), and (C).

No significant SNPs were shared between
R1.LN and R3.LN. The complete list of genes
and their putative descriptions are provided in
Supplementary Material B.

Genomic selection models performance
For the genomic selection models, we eval-
uated the following key aspects: the impact of
different statistical methods on prediction accu-
racy and the use of cross-validation schemes
for validating the genomic model for selection
efficiency in a breeding program targeting
NUE traits. Among the traits evaluated in
the inbred line population, R1.LN showed
the highest prediction accuracies (0.36-0.38),

followed by R3.LN (0.29-0.33) and R6.LN
(0.03-0.06) (Fig. 3). These results are particu-
larly interesting because this model can be
directly used as a training population in a
breeding program for either selecting top-
performing individuals or discarding unde-
sired performance-based individuals.
Although all statistical models showed
similar trends across traits, multitrait models
consistently outperformed others, with the
MT_GBLUP model yielding the best overall
correlation. In addition, the multi-trait model
showed a smaller spread for the predictions
for all traits compared with single-trait models.
Additionally, R6.LN showed low prediction

accuracy. This result may be attributable to the
fact that there is very little variability for this
trait (Fig. 1).

To assess how well our models predict the
performance of untested future generations
(hybrids) and untested environments, models
were calibrated using the inbred lines (which
included the parents) to predict hybrid perfor-
mance for the R3.LN trait. The predictive accu-
racy of the models for hybrids was lower than
the accuracy observed within the inbred popu-
lation in which they were trained (Fig. 3B).
Among the models tested, GBLUP slightly out-
performed BayesB in terms of prediction accu-
racy (0.14 vs. 0.13).

Table 2. Candidate genes identified from the single nucleotide polymorphisms (SNPs) associated with the nitrogen use efficiency (NUE) traits.

Trait Model Chromosome SNP Pos Gene ID/MaizeGDB Gene description Annotation
RI1.LN FarmCPU Chrl 222056270 Zm00001eb042130 Aminopeptidase Peptide binding
FarmCPU Chrl 7261188 Zm00001eb002490 Protein NLP2 DNA binding
FarmCPU Chr5 7874493 Zm00001eb214890 Ammonium transporter Ammonium transmembrane
transporter activity
FarmCPU Chr8 29802249 Zm00001eb339390 RWP-RK domain-containing DNA binding
- protein; protein NLP6
R3.LN FarmCPU Chr4 192007595 Zm00001eb196180 Major facilitator superfamily Transmembrane transporter
(MES) profile domain- activity
containing protein;
carbohydrate transporter/
sugar porter/transporter
FarmCPU Chr6 157366906 Zm00001eb287950 Protein NRT1/PTR family Transmembrane transporter
activity
FarmCPU Chr7 171898601 Zm00001eb326420 Putative indole-3-acetic Acid-amino acid ligase
acid-amido synthetase activity
GH3.1; indole-3-acetic acid-
amido synthetase GH3.8
MLM Chrl0 5917216 Zm00001eb406990 Cationic amino acid Amino acid transmembrane

transporter 6 chloroplastic;
cationic amino acid
transporter C-terminal
domain-containing protein

transporter activity

The gene identification (ID) refers to the B73 genome (version 5). R1.LN and R3.LN represent the leaf nitrogen measured at stages R1 and R3, respectively.
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Fig. 3. Prediction accuracy of cross-validation scheme one (CV1) for the R1.LN, R3.LN, and R6.LN traits (A) and cross-validation scheme zero (CV0) for
the R3.LN trait (B). The accuracy reported is the Pearson correlation between best linear unbiased estimates (BLUEs) and estimated breeding values from the
genomic model. Note that the x-axis in (A) and that in (B) are on different scales. GBLUP = genomic best linear unbiased prediction; MT_GBLUP =
multi-trait GBLUP model; MT_SpikeSlab = multi-trait spike—slab model; ST_ BayesB = single-trait BayesB model; ST_GBLUP = single GBLUP

model.

Cross prediction

The list of the top 100 predicted crosses
with the highest performance is provided in
Supplemental Material C. These crosses
involved 72 unique parents. The average
predicted performance for the index for
the selected crosses was 2.69, with an esti-
mated inbreeding coefficient of 0.022 for
the resulting generation. A correlation of
0.13 was observed between the predicted
values of these crosses and the phenotypic
values of the corresponding F1 hybrids
evaluated in the field (Fig. 4).

Breeding strategies for breeding NUE
traits

The set of simulations represented breed-
ing strategies that could be realistically

implemented in the sweet corn breeding
program to improve NUE traits (Fig. 5
and Table 3). Among them, the most ef-
fective was the application of OCS, which
led to a 20% higher genetic gain compared
with the benchmark Conv scenario.

This gain was achieved through the opti-
mization of crosses using the SimpleMating
algorithm to select the best combinations
throughout the pipeline. The target trait (mim-
icking R3.LN) exhibited the highest perfor-
mance, while trait 2 (representing indirect
selection in R1.LN) showed a lower, yet posi-
tive, genetic gain after 20 years of selection.
As expected, genomic selection increased the
genetic gain for both traits, outperforming the
Conv scenario. These results provide strong
evidence that genomic tools can effectively

accelerate genetic gain for NUE traits in the
sweet corn breeding program.

Discussion

NUE traits presented variability and
estimates of heritability suitable for
breeding

The heritability estimates and variance
components for traits within the diversity panel
fall within expected ranges, indicating mean-
ingful breeding potential, consistent with find-
ings in field corn (Mastrodomenico et al.
2018). In terms of genetic architecture, we
identified that NUE traits in our population
had a complex genetic architecture, with low
to moderate heritability values. Notably, an in-
crease in the mean value of R3.LN was
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Fig. 4. F, progenies predicted via SimpleMating. (A) Pairwise prediction of midparental values for all possible crosses among the lines’ population plotted against
the pairwise covariance coming from the additive relationship matrix. The dotted line represents the culling parameters. (B). Predicted crosses vs. the best linear
unbiased estimates (BLUESs) values for the trait measured in the hybrid population. The dotted line represents a regression line. NS = nonselected; S = selected

by the SimpleMating algorithm.

HorTScience VoL. 60(12) DEcEMBER 2025

2341

/0’ /ou-Aq/sesuaol|/610 suowwodaAeald//:sdny (/0" 7/ouU-Aq/sasuadl|/Bi0 SUOWWOIBAIIBBIO//:SA)Y) 9SUadl|
DJN-AZ DD 9y} Japun pajnqulsip ajoie ssaooe uado ue s siy] '$se00y uadQ BIA £€2-1 L-GZ0Z 18 /w09 Alojoejqnd poid-awnid-ylewssyem-jpd-awiid//:sdpy wol papeojumoq



A Trait 1 Trait 2 B Trait 1 Trait 2
100 0.8
75 © 086
(5]
& =
2 8
z
g g
o
H 5.0 © 04
© =
Q
(7] c
(6] @
(L]
25 02
0 5 10 15 20 [] 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Year Year

Comw as ocs

Fig. 5. Additive population mean and variance through 20 years of simulation for the three scenarios simulated. The shading around the curve represents the
standard error (SE) for the 20 repetitions. (A) Mean and (B) variance. The OCS scenario (using the SimpleMating algorithm) yielded a smaller decrease
in genetic diversity. Conv = truncated phenotypic selection; GS = truncated genomic selection; MPV = midparent value; OCS = optimum cross selec-

tion with the MPV-based performance.

observed in hybrids derived from the diversity
panel, likely reflecting heterosis (Labroo et al.
2021), because these hybrids were generated
from a subset of the inbred lines. Within the in-
bred population, R1.LN and R3.LN showed a
moderate positive correlation (0.48), suggest-
ing a degree of pleiotropy. However, the fact
that this correlation is not perfect implies the
existence of partially independent genetic
mechanisms underlying the two traits. This
finding underscores the importance of con-
sidering potential indirect responses when
selecting for one trait because it may im-
pact others, and it is relevant for designing
effective breeding strategies (Covarrubias-
Pazaran et al. 2022; Marulanda et al. 2021).

The application of spatial models for geno-
typic evaluation appeared to capture certain pat-
terns of field variability affecting the traits under
study. Interestingly, although all traits were
measured within the same trial, the spatial cor-
rection patterns differed. This discrepancy likely
reflects environmental influences that vary
across different stages of plant development.
For R6.LN, in particular, a row—column effect
and a nugget effect were included in the spatial
model (Supplemental Material A Fig. B).
The nugget effect helps account for intrinsic
measurement errors or small-scale environ-
mental variation (Werner et al. 2024). While
the inclusion of this component improved
overall model performance, the genotypic ef-
fect for R6.LN was not statistically significant.
This suggests an absence of genetic variation
for this trait among the evaluated genotypes,
implying that selection would yield no genetic
gain. This conclusion is further supported by
the very low heritability estimate for R6.LN

(H? = 0.03). In summary, spatial models can
enhance the precision of genotypic evaluations
and, thus, increase the efficiency of breeding
programs targeting NUE. However, their effec-
tiveness relies on the presence of genetic varia-
tion in the trait of interest.

Al screening can identify possible NUE
candidate genes from genome-wide
association analyses

We used GWAS to identify candidate
genes associated with NUE traits, specifically
R1.LN and R3.LN. Because of the highly
quantitative nature of these traits, we used the
FarmCPU method based on the hypothesis
that it would outperform the traditional
MLM, particularly for traits controlled by
many small-effect SNPs. This hypothesis was
supported by the following results: FarmCPU
identified candidate genes for both traits,
whereas the MLM detected associations for
only one trait. In addition, the variance ex-
plained by the significant markers had a small
value per se, which was also an indication of
the quantitative nature of these traits.

Gene mining and annotation are the most
laborious steps of running a GWAS pipeline.
However, with the advances of Al in several
fields, some tools could be used to speed this
process. After identifying the genes near the
significant SNPs for both traits, we used the
SCISPACE AI tool to perform an initial
screening to identify genes related to NUE
traits in sweet corn. Among those, we could
identify the following four relevant categories
of genes: nitrogen uptake genes, including
the high-affinity nitrate transporters (NRT2.2
and NRT2.5) and the low-affinity nitrate

Table 3. Genetic mean, variance, and standard error (SE; in parentheses) for trait 1 (targeted) and trait
2 (indirect selection). Trait 1 and trait 2 were mimicking R1.LN and R3.LN traits.

Genetic mean

Genetic variance

Scenario Trait 1 Trait 2 Trait 1 Trait 2

Conv 5.46 (0.158) 2.51 (0.152) 0.47 (0.028) 0.52 (0.035)
GS 8.99 (0.286) 4.22 (0.256) 0.02 (0.004) 0.03 (0.004)
OCS 10.11 (0.265) 4.65 (0.232) 0.07 (0.007) 0.09 (0.006)

Conv = conventional; GS = genomic selection; OCS = optimal cross selection.
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transporters (ZmNPF7.9 or NRT1.5) essential
for seed development, facilitating nitrate trans-
port from maternal tissues to the endosperm
(Wei et al. 2021); nitrogen metabolism and as-
similation genes, including glutamine synthe-
tase and asparagine synthetase, which convert
inorganic nitrogen into organic forms for plant
use (Singh et al. 2023), and ammonium trans-
porter 1, which plays a role in ammonium up-
take and transport; nitrogen utilization and
efficiency, including the transmembrane amino
acid transporter family protein associated with
nitrogen compound metabolic processes and
NUE, and the MADS26 transcription factor,
which, when overexpressed, enhances nitrate
utilization (Zhang et al. 2024); and nitrogen re-
mobilization genes, including ZmASR6 and
the ATP-dependent Clp protease gene, which
have been linked to nitrogen remobilization ef-
ficiency, particularly during leaf senescence,
and are part of a complex regulatory network
involving hormone signaling (Gong et al.
2020).

In this context, we highlighted that the use
of the Al tool was instrumental in accelerat-
ing the candidate gene identification process,
offering a promising avenue to streamline
candidate gene screening within breeding
programs. The GWAS is known to include
true positive and false positive quantitative
trait loci (Fernando et al. 2004; Hayes 2013).
Future functional studies are essential to vali-
dating the efficiency and accuracy of the SCI-
SPACE tool following the GWAS. While
validating the candidate genes identified in
this study will be strategic for their introgres-
sion into elite germplasm to enhance NUE
performance, our work represents an initial
step toward that goal.

Genomic selection model performance
enables effective selection and
deployment in sweet corn

Breeding for NUE traits in the sweet corn
program can greatly benefit from the imple-
mentation of genomic selection across multi-
ple stages of the pipeline. First, genomic
prediction can be used to identify the best
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inbred lines to advance to hybrid develop-
ment (Graciano et al. 2025; Peixoto et al.
2024a). At this stage, a model capturing only
additive genetic effects may be sufficient to
select the top-performing individuals. Sec-
ond, the same model can be used to estimate
marker effects and, from a pool of potential
parental candidates, facilitate the design of
crosses that are more likely to enhance NUE
traits (Peixoto et al. 2024a). Ultimately, be-
cause the primary goal of the sweet corn
breeding program is the development of
high-performing hybrids, genomic models
can also be applied to predict hybrid perfor-
mance (Peixoto et al. 2024c; Zystro et al.
2021a, 2021b). This enables the selection of
the most promising combinations to advance
for field evaluation.

As a vegetable crop, sweet corn presents
multiple breeding targets, making the selec-
tion of superior commercial genotypes a
complex task. While this complexity can hin-
der genetic gains, it also presents an opportu-
nity for quantitative geneticists to apply
multi-trait genomic selection models that le-
verage correlations among traits (Calus et al.
2013; Cui et al. 2020; Sandhu et al. 2022). In
our study, the use of a multi-trait GBLUP
model led to increased predictive perfor-
mance and genetic gain compared with its
single-trait counterpart, resulting in improve-
ments of 5% for R1.LN, 12.5% for R3.LN,
and 120% for R6.LN. This added benefit of
genomic information in multi-trait models is
most likely attributable to the moderate corre-
lation between traits.

Our results highlight that the genomic
models for selecting lines with outstanding
performance in NUE traits and for guiding
cross prediction demonstrated good predic-
tive accuracy and could be implemented im-
mediately in the breeding pipeline. However,
the performance of the model when predict-
ing hybrid performance, particularly the
R3.LN trait, was not as strong as that in the
inbred line panel. The following several fac-
tors may explain this, despite the predictive
values not being necessarily poor: only a sub-
set of the inbred lines was used as parents,
and not all of those hybrid parents were geno-
typed; the number of hybrids generated was
limited, which could have introduced bias in
the analyses when the experiment was small
and/or poorly replicated; the experimental de-
sign for evaluating hybrids was suboptimal
(although 108 hybrids were taken to the field,
only 49 had phenotypes for the target trait);
and parents were present in only one or a few
Ccrosses.

As reported by Peixoto et al. (2024b), we
implemented a model with nonadditive ef-
fects (additive plus dominance effects). We
hypothesized that this could improve predic-
tion accuracy in the hybrid population. How-
ever, following the same pattern of such
work, we found lower or similar prediction
accuracy compared with that of the model
with additive effects only (results not shown).
Despite the decrease in accuracy when pre-
dicting untested hybrids, the predictive ability
can still be valuable for breeding. Particularly,
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the model can still be used to eliminate low-
performing candidates, reduce phenotyping ef-
forts, and ensure that the most outstanding can-
didates reach the field stage (Beyene et al.
2021).

Deployment of genomic tools in the
sweet corn breeding program improves
short-term and long-term genetic gains

The genomic model applied to the inbred
line population demonstrated reliable predic-
tive accuracy for both traits that were studied
(R1.LN and R3.LN). Because of the moder-
ate genetic correlation between these traits
and their high phenotyping costs, the follow-
ing key question arose: what would be the
impact of applying genomic selection target-
ing only one trait on the long-term genetic
gain for both? The results indicated a clear
benefit of implementing genomic selection
for NUE traits. Direct genetic gain was sub-
stantial for trait 1 (mimicking R3.LN); nota-
bly, a positive genetic response was also
observed for trait 2 (mimicking R1.LN). This
outcome emphasized the potential of indirect
selection to improve correlated traits (Marulanda
et al. 2021), and it is useful for defining breed-
ing goals that target NUE traits in the sweet
corn breeding program.

Therefore, the use of genomic selection
for predicting crosses was highly recommended
and not only improved trait performance over
the long term but also helped maintain genetic
variance when the SimpleMating algorithm was
applied with appropriate constraints. Notably,
the strategy adopted in this study did not incur
additional costs to the breeding program be-
cause both prediction and optimization were
based on existing marker effects and the geno-
mic relationship matrix available in both scenar-
ios. Beyond enabling a cost-neutral increase in
genetic gain, the implementation of OCS trans-
formed the breeding program into a more data-
driven operation (Akdemir and Sanchez 2016;
Gorjanc et al. 2018; Peixoto et al. 2025).

Breeding for multiple traits in sweet
corn, although challenging, can be
efficient

In a sweet corn breeding program, while
some traits, such as plant height, ear width,
and taper, are relatively easy and less labori-
ous to measure (Gonzalez et al. 2022), others
require more arduous and time-consuming
techniques (e.g., NUE, phytoglycogen con-
tent, and disease resistance scores) (Mahon
2023). As we advance through the selection
pipeline, it is crucial to understand how the
improvement of one trait may impact others.
This impact is known as the indirect re-
sponse, and it arises from the genetic correla-
tion between the main trait and secondary
traits (Mrode 2014). A negative genetic cor-
relation can lead to an undesirable tradeoff,
whereby improving one trait causes a decline
in another. To mitigate such outcomes, a se-
lection index can be used. This approach as-
signs weights to each trait and combines
them into a single index value, enabling bal-
anced selection that accounts for the genetic

relationships among traits (Batista et al.
2021; Marulanda et al. 2021; Silva et al.
2021).

For NUE traits, indirect selection appears
to be beneficial. First, because these traits are
labor-intensive and expensive to measure,
targeting only one trait (i.e., measuring it
in the laboratory) can still yield a positive
response in the correlated trait. Second,
borrowing information across traits using a
multi-trait genomic selection framework
can enhance prediction performance. This
approach is particularly advantageous for
traits that are difficult or costly to measure,
expressed in late phenological stages, or
have low heritability because it can im-
prove predictive accuracy through shared
genetic signals (Calus et al. 2013; Lyra
et al. 2017; Sandhu et al. 2022).

Conclusions

Through this work, we computed genetic
parameters and suggested that NUE traits in
sweet corn have complex genetic architecture
but potential for breeding. Additionally, we
provided GWAS hits and candidate genes
that should be further validated in down-
stream validation analyses. We also drew at-
tention to the potential of genomic selection to
accelerate and increase genetic gains for those
traits and opened a window for testing the ge-
nomic model in larger populations, especially
hybrids across different breeding states. Fi-
nally, we showed that combing genomic selec-
tion with cross prediction and optimization can
increase genetic gain for NUE traits in the
long-term. Therefore, including genomic tools
to breed for NUE traits is effective and opens a
new window for future implementations. Ulti-
mately, these results and strategies can be used
in the University of Florida breeding program
and any other program that targets NUE.
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