HORTSCIENCE 60(11):2094-2095. 2025. https://doi.org/10.21273/HORTSCI18848-25

Hot Pursuit: Searching for the Optimal Wasabi Greenhouse Growing Environment

Clint M. Taylor, Dalyn M. McCauley, and Lloyd L. Nackley

North Willamette Research and Extension Center, Oregon State University, 15210 Northeast Miley Road, Aurora, OR 97002, USA; and Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA

Keywords. coir, irrigation, mini-lysimeter, soilless, stomata, substrates

Abstract. Understanding the optimal environmental conditions for wasabi (Eutrema japonicum) is key to expanding its cultivation. This study identifies key factors influencing wasabi's growth, including photosynthetic photon flux (Q_i), intercellular CO₂ concentration (C_i), soil moisture, and vapor pressure deficit (VPD). Results show that wasabi thrives with soil moisture $\geq 95\%$ field capacity, VPD ≤ 2.0 kPa, and light levels between 500 and 830 μ mol·m⁻²·s⁻¹. Maximum net assimilation occurred at 828 μ mol·m⁻²·s⁻¹, with strong responses to increased CO₂, suggesting greenhouse target CO₂ at 1200 ppm. These findings provide initial soil moisture and VPD thresholds for wasabi cultivation in controlled environments, with further research needed on irrigation practices.

Wasabi (Eutrema japonicum) is traditionally cultivated in cool, gravelly mountain streams in Japan's Nagano and Shizuoka regions (Chadwick et al. 1993), where it grows at elevations of 200 to 1000 m. Wasabi is grown in two systems: flooded systems that produce premium fresh herbs and upland systems for processing-vegetable products. Upland systems require cool temperatures (6 to 20 °C), with optimal growth at 8 to 18 °C; flooded systems perform best at 12 to 15 °C. When cultivated outside this native range, such as in the Pacific Northwest, where wasabi is a specialty horticultural crop grown in greenhouses, there are increased production challenges including root rot diseases, frost damage, and delayed maturity (Miles and Chadwick 2007). While propagation protocols have advanced (Hoang et al. 2019), optimal greenhouse production conditions, including light and soil moisture, remain uncertain.

Greenhouse systems may enable broader wasabi cultivation, expanding production outside of traditional areas; however, success depends on defining precise moisture and light conditions. Gas exchange and stomatal conductance (g_{sw}) provide insight into plant responses

Received for publication 15 Jul 2025. Accepted for publication 29 Aug 2025. Published online 8 Oct 2025.

We thank Chip Bubl, Jennifer Bloeser, Kristie Buckland, Cindy Ocamb, Cedar, Mel Topping, Amanda Weaton, Paige Spence, Erica Mathews, Allison Taylor, the Oregon Association of Nurseries, and the Oregon State University Agricultural Research Foundation.

L.L.N. is the corresponding author. E-mail: Lloyd. Nackley@oregonstate.edu.

This is an open access article distributed under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

to environmental factors (Buckley 2019). Lysimeters synchronized with $g_{\rm sw}$ data can identify soil moisture thresholds for irrigation (McCauley et al. 2021). A/C_i and A/Q_i response curves further elucidate photosynthetic responses. The objective of this study was to use these tools to define optimal light conditions for container-grown wasabi.

Materials and Methods

The study was conducted at the North Willamette Research and Extension Center in Aurora, OR, USA (lat. 45.281009, long. 122.752512) in a heated, double-walled polyethylene greenhouse equipped with automated controls to maintain stable temperature and humidity. The structure provided diffuse light transmission and insulation suitable for cool-season crop production. Wasabi (cv. Daruma) was sourced from a commercial propagator and grown in 10.6-L air-pruning pots (#3 pots; RediRoot, Boring, OR, USA) filled with coconut fiber soilless substrate for greenhouse crops (Rio Coco PCM, Irving, TX, USA).

On 13 Mar 2024, 16 healthy plants were placed on a mini-lysimeter system controlling irrigation based on container weight. Irrigation

was triggered at 90% container capacity), defined as the weight after full saturation and 1 h of drainage. The mini-lysimeter control system is discussed in detail in the work of McCauley and Nackley (2022).

Overhead lighting from 1000-W high-pressure sodium lamps were set to provide supplemental morning light at 750 µmol·m⁻²·s⁻¹, operating daily from 8:00 to 11:00 AM, after which natural sunlight provided illumination for the remainder of the day.

Leaf-gas exchange. A portable photosynthesis system (LI-6800; LI-COR Biosciences, Lincoln, NE, USA) was used to generate light and CO_2 response curves on mature leaves of three different plants (n=3). Photosynthetic light responses (A/Q) were measured under the following conditions: CO_2 concentration set to 400 ppm, temperature at $21\,^{\circ}$ C, relative humidity (RH) at 50%, fan speed at 10,000 rpm, and flow rate set to 500 µmol·s⁻¹. Readings were taken at 2000, 1500, 1000, 800, 600, 500, 300, 200, 150, 50, and 0 photosynthetic photon flux density (PPFD).

Photosynthetic CO_2 response (A/C_i) were measured under the following conditions: incident light (Q_{in}) was maintained at 650 μ mol·m⁻², with a temperature of 21 °C, RH at 50%, fan speed at 10,000 rpm, and flow rate set to 600 μ mol·s⁻¹. Measurements were taken at CO_2 concentrations of 400, 300, 200, 100, 50, 0, 400, 600, 800, 1000, 1200, 1600, and 2000 ppm over a period of \sim 45 min.

 $m CO_2$ response data were analyzed using the Farquhar–von Caemmerer–Berry (FvCB) model (Farquhar et al. 1980) adjusted for temperature and $m CO_2$ (Bernacchi et al. 2001). Parameters included V_{c} max, J_{max} , R_d , and triose phosphate utilization (TPU) (Sharkey et al. 2016). Parameters were estimated using nonlinear least squares in MATLAB constrained within biological ranges and evaluated with linear modeling (Supplemental Fig. 1).

Starting on 18 Mar 2024, irrigation was stopped, and the pots were allowed to dry down. During a 4-day dry-down, leaf gas-exchange parameters (g_{sw} , VPD_{leaf}, and Q_{amb}) (Table 1) were measured from each plant (n = 16) every 60 to 90 min starting at 9:00 AM until around 4:00 PM with a portable porometer–fluorometer (LI-600; LI-COR Biosciences). Attention was focused on sampling the newest, fully developed mature leaves.

Results and Discussion

The automatic misting and irrigation systems in the greenhouse were used to

Table 1. Environmental data recorded on the 4 days when soil moisture content and transpiration measurements were taken.

	PPFD (μ mol·m ⁻² ·s ⁻¹)		VPD (kPa)		Temp (°C)			Mean field
Day	Mean	Max	Mean	Max	Min	Mean	Max	capacity (%)
Mar 18	201.96	1080	1.10	2.45	9.13	18.31	27.05	95
Mar 19	234.82	1136	0.85	1.72	9.17	16.90	24.00	90
Mar 20	261.22	1006	0.79	1.87	11.81	16.89	23.22	86
Mar 21	257.79	1347	0.84	2.24	12.16	17.49	25.79	82

Max = maximum; Min = minimum; PPFD = photosynthetic photon flux density; Temp = temperature.

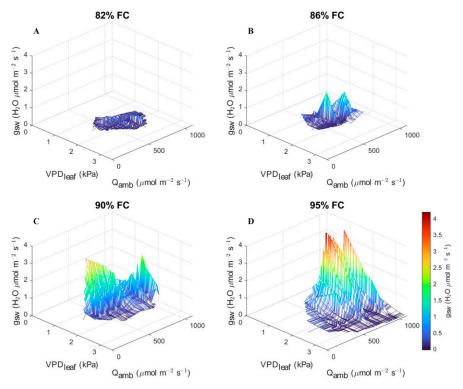


Fig. 1. Stomatal conductance (g_{sw}) over a range of field capacities (FC), VPD_{leaf}, and light. (A) 82% FC (n = 112). (B) 86% FC (n = 96). (C) 90% FC (n = 112). (D) 95% FC (n = 96). All axes are scaled the same, with the *x*-axis showing VPD_{leaf}, the *y*-axis Q_{amb} , and the *z*-axis g_{sw} . The color scale for all is scaled the same. Red represents a high g_{sw} of ~4, while orange is ~3, green is ~2, and blue is ≤ 1 µmol H₂O m⁻²·s⁻¹. At 95% FC, plants maintained high g_{sw} even under less favorable atmospheric conditions, whereas at 82% FC, g_{sw} remained suppressed despite optimal light and VPD_{leaf}.

effectively mimic natural conditions of the mountain stream beds with abundant moisture and low heat stress. During the initial phase, when moisture was abundant, leaf gas exchange revealed a maximum assimilation rate (A_{max}) of $11.08 \pm 0.42 \, \mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ at 828 μ mol·m⁻²·s⁻¹ Q_{amb} (Supplemental Fig. 1). Model fitting showed a strong correlation between light levels and net assimilation $(R^2 = 0.906)$, with adequate PPFD setting for greenhouse growers to target between 500 and 800 μ mol·m⁻²·s⁻¹. The A/C_i curve (Supplemental Fig. 1B) showed an A_{max} of 22.84 \pm 1.82 μ mol·m⁻²·s⁻¹ at 1600 μ mol·mol⁻¹ CO₂, indicating a strong response to CO2 but with diminishing returns at higher CO₂ concentrations. Key parameters such as $V_{c \text{ max}}$ (74 µmol·m⁻²·s⁻¹ at 21 °C) and J_{max} (108 μ mol·m⁻²·s⁻¹ at 21 °C) suggest that photosynthesis in wasabi is constrained by both Rubisco activity and RuBP regeneration at lower CO₂, with a triose phosphate utilization (TPU) limitation at higher concentrations. The FvCB model fit strongly ($R^2 = 0.959$). The higher $V_{c max}$ and J_{max} values suggest that wasabi has the potential to benefit from elevated CO₂ conditions, making greenhouse cultivation with CO₂ enrichment targeting 1200 ppm CO₂ a viable option for future cultivation.

During the dry-down period, when irrigation was limited, the drying substrate caused rapid reductions in stomatal conductance (g_{sw}), indicating a sensitivity to dry soils. While g_{sw} was positively correlated with both Q_{amb} and VPD_{leaf}, field capacity

(FC) emerged as the dominant control. For example, at 95% FC, g_{sw} remained robust (~3 to 4 μ mol H₂O m⁻²·s⁻¹) even as VPD_{leaf} approached 2.0 kPa (Fig. 1). In contrast, at 82% FC, $g_{\rm sw}$ remained low (<1 μ mol H₂O m⁻² s⁻¹) across all VPD_{leaf} and ambient light (Q_{amb}) conditions. Plants at 95% and 90% FC showed a clear positive response to increasing light, with peak $g_{\rm sw}$ observed around 800 $\mu {\rm mol \ m^{-2} \cdot s^{-1}}$. However, plants at 86% and 82% FC displayed minimal g_{sw} response to changing light levels, indicating that light alone could not overcome the limitations imposed by lower soil moisture. Our work is among the very few studies of wasabi photosynthesis, with essentially no direct comparisons available. A couple of titles from the early 2000s suggest that photosynthesis work was conducted in Korea, but these studies were published in Korean in reports that are not readily accessible outside that region. A more recent publicly available study examined the effects of light quality on wasabi growth (Ruamrungsri et al. 2025). However, according to our findings, their research was conducted at light intensities (35, 60, 90, and 140 µmol·m⁻²·s⁻¹ PPFD) that were suboptimal. These are unusually low light intensities for any plant. We identified an optimal target of $800 \pm 50 \,\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ PPFD, which supported assimilation rates of $\sim 10 \, \mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, increasing to >20 μmol·m⁻²·s⁻¹ with CO₂ enrichment (Supplemental Fig. 1). By comparison, their reported assimilation rates of \sim 2 μmol·m $^{-2}$ ·s $^{-1}$ (Ruamrungsri et al. 2025) were consistent with our measurements at \sim 100 μmol·m $^{-2}$ ·s $^{-1}$ PPFD. Given the scarcity of wasabi research, indirect comparisons to other Brassicaceae root crops provide a useful benchmark. For example, red radish (*Raphanus sativus* L.) $A_{\rm max}$ was between 15 and 18 μmol·m $^{-2}$ ·s $^{-1}$ and was sensitive to irrigation deficit (Alsadon et al. 2023). These findings underscore the critical role of soil moisture in maintaining stomatal function and suggest that irrigation strategies for wasabi should prioritize keeping FC above 90% to sustain physiological activity under fluctuating environmental conditions.

References Cited

Alsadon A, Dewir YH, Ibrahim A, Alenazi M, Osman M, Al-Selwey WA, Ali MA, Shady M, Alsughayyir A, Hakiman M. 2023. Compost amendment enhances leaf gas exchange, growth, and yield in water-challenged 'Crimson Giant' red radish (*Raphanus sativus* L.). HortScience. 59(1):84–91. https://doi.org/10.21273/HORTSCI17371-23.

Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24(2):253–259. https:// doi.org/10.1111/j.1365-3040.2001.00668.x.

Buckley TN. 2019. How do stomata respond to water status? New Phytol. 224(1):21–36.

Chadwick CI, Lumpkin TA, Elberson LR. 1993. The botany, uses and production of *Wasabia japonica* (Miq.) (Cruciferaceae) Matsum. Econ Bot. 47(2): 113–135. https://doi.org/10.1007/BF02862015.

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta. 149(1):78–90.

Hoang NN, Kitaya Y, Shibuya T, Endo R. 2019. Development of an in vitro hydroponic culture system for wasabi nursery plant production—Effects of nutrient concentration and supporting material on plantlet growth. Sci Hortic. 245:237–243. https://doi.org/10.1016/j.scienta.2018.10.025.

Lobo FA, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis GL, Rodríguez Ortíz CE. 2013. Fitting net photosynthetic light-response curves with Microsoft Excel: A critical look at the models. Photosynthetica. 51(3):445–456. https://doi.org/10.1007/s11099-013-0045-y.

McCauley D, Levin A, Nackley L. 2021. Reviewing mini-lysimeter controlled irrigation in container crop systems. HortTechnology. 31(6):634–641. https://doi.org/10.21273/HORTTECH04826-21.

McCauley DM, Nackley LL. 2022. Development of mini-lysimeter system for use in irrigation automation of container-grown crops. HardwareX. 11:e00298.

Miles C, Chadwick C. 2007. Growing wasabi in the Pacific Northwest. Pacific Northwest Publications, PNW 605. Oregon State University Extension Service. https://extension.oregonstate.edu/catalog/pub/pnw-605-growing-wasabi-pacific-northwest. [accessed 4 Jul 2025].

Ruamrungsri S, Utrapen Y, Tateing S, Panjama K, Inkham C. 2025. Impact of LED combinations and light intensity on growth and yields of wasabi. Horticulturae. 11(1):3. https://doi.org/10.3390/horticulturae11010003.

Sharkey TD. 2016. What gas exchange data can tell us about photosynthesis. Plant Cell Environ. 39(6):1161–1163.