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Abstract. ‘Honeycrisp’ is a popular apple cultivar, but it is prone to several disorders, espe-
cially bitter pit. Previously reported models for predicting bitter pit are biased, indicating
that the models are missing one or more important predictor variables. To identify addi-
tional variables thatmay improve bitter pit prediction, a studywas undertaken to investigate
the influence of canopy position, spur characteristics, and individual fruit characteristics on
bitter pit development. ‘Honeycrisp’ trees from two orchards over 2 years provided four
combinations of orchards and years. Fruits were sampled from spurs at different canopy
positions and with varying bourse shoot lengths and numbers of fruits and leaves. Following
cold storage, bitter pit was assessed in three ways: 1) bitter pit severity was recorded as the
number of pits per fruit, 2) bitter pit was recorded as a binomial response (yes, no) for each
fruit, and 3) the incidence of bitter pit was recorded as the proportion of fruit developing bit-
ter pit. As a result of the high fruit-to-fruit variation, bitter pit severity was associated with
canopy position or spur characteristics to a lesser extent than bitter pit incidence. Bitter pit
incidence was generally greater for fruits developing on spurs with only one fruit and spurs
from the lower canopy. Binomial data were analyzed with a generalized linear mixed model.
Fruit harvested from trees with heavy crop loads, and those developing on spurs with multi-
ple fruit and spurs with long bourse shoots had the lowest probability of developing bitter
pit. Regardless of how bitter pit was assessed, bitter pit related positively to fruit weight
(FW), but the relationship usually depended on other variables such as canopy position, fruit
per spur, and leaves per spur. The advantages of fitting binomial data with logistic regres-
sionmodels are discussed.

‘Honeycrisp’ is one of the top five apple
cultivars in the United States, but consistent
production of high-quality fruit is challenging.
One negative characteristic of the cultivar is
its susceptibility to bitter pit. The severity of
bitter pit varies across years, orchards, and
trees within orchards. For example, the inci-
dence of bitter pit for individual trees within
an orchard varied from 0% to 100%, and bitter
pit for a given tree may vary with crop load
and tree vigor (Baugher et al., 2017).

In commercial apple production, accurate
predictions of bitter pit incidence are critical

to provide high-quality fruit to consumers.
Understanding which fruit on a tree are most
likely to develop bitter pit has implications for
management practices and postharvest strate-
gies. For example, if growers could identify
fruit with a high likelihood of bitter pit devel-
opment, they could sell those fruit immedi-
ately, whereas fruit with a low likelihood of
bitter pit development could be stored. To pre-
dict bitter pit incidence, researchers have used
preharvest fruit mineral analysis to identify
blocks of trees that are likely to have a high
incidence of bitter pit after storage (Baugher

et al., 2017; Perring, 1986; Torres et al.,
2017). More recently Al Shoffe et al. (2019)
evaluated a nonmineral prediction method.

However, these predictive models explai-
ned no more than 70% of the variation in
observed bitter pit incidence. Some models
are biased because they tend to underpredict
the incidence of bitter pit for orchards with a
high observed incidence of bitter pit (Al
Shoffe et al., 2019; Baugher et al., 2017). The
poor predictive ability and the biased nature of
these models indicates that one or more imp-
ortant variables associated with bitter pit have
yet to be identified.

High variability in bitter pit incidence
within a tree may be a result of multiple fac-
tors that affect nutrient transport to the fruit,
such as nutrient availability and transpiration.
For example, bitter pit is associated with low
concentrations of calcium and high ratios of
nitrogen and cations to calcium in apple fruit
flesh and peel tissue (Baugher et al., 2017;
Cheng and Sazo, 2018; Ferguson, 2001; Fer-
guson and Watkins, 1989). Calcium moves
with the transpiration stream and enters the
fruit through the xylem (Tromp and Oele,
1972). Therefore, fruit developing on spurs
with high transpiration rates would likely
have a high calcium content and a low inci-
dence of bitter pit. However, the relationship
between transpiration, calcium availability,
and bitter pit is complex. For example, sev-
eral tree and environmental factors influence
transpiration and fruit mineral concentration,
such as crop density (Ferguson and Watkins,
1992), fruit size (Perring and Jackson, 1975),
shade (Jackson and Sharples, 1971), tempera-
ture (Tromp, 1974), humidity (Cline and
Hanson, 1992; Tromp and Oele, 1972), fruit
maturity (Prange et al., 2015), the presence of
bourse shoots, and leaf area per spur (Volz
et al., 1994).

In addition to transpiration, tree canopy
position influences the microclimate around a
fruit, and can affect fruit maturity and quality
(Feng et al., 2014; Krishnaprakash et al., 1983;
Tustin et al., 1988). Leaves and fruit in the
lower shaded region of the canopy likely have
low transpiration rates, resulting in low fruit
calcium concentrations and a greater likelihood
of developing bitter pit. However, there are
conflicting reports concerning the influence of
fruit position within a canopy on fruit calcium
and bitter pit. Jackson and Sharples (1971) and
Ferguson and Triggs (1990) found lower cal-
cium concentrations in fruit from the upper
canopy. To the contrary, Kalcsits et al. (2019)
reported greater concentrations of calcium and
a lower incidence of bitter pit in fruit from the
upper and peripheral parts of the canopy. Can-
opy size, local climatic conditions, and cultivar
may have contributed to the conflicting results.
Therefore, there is a need to assess the influ-
ence of canopy position on bitter pit develop-
ment in intensive orchards in humid regions.

The first objective of our study was to
identify some of the within-canopy factors
associated with bitter pit development on
‘Honeycrisp’ apples grown in intensive orch-
ards in the humid mid-Atlantic region. A sec-
ond objective was to demonstrate the use of
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logistic regression in horticultural research in
which the response variable is binomial. In
our study, we used logistic regression to pre-
dict the probability of individual fruit to dev-
elop bitter pit.

Materials and Method

Aspers orchard 1. Nine 8-year-old ‘Ho-
neycrisp’ trees on M.9 Nic29 rootstock with
moderate crop loads were selected in a
commercial orchard in Aspers, PA (lat.
39.9772�N, long. 77.2251�W). Rows were
oriented north–south, and trees were spaced
at 4.9 � 1.5 m, trained as vertical axis, and
were �3.6 m tall. On 25 Aug. 2016, 4 d
before the first commercial spot picking, one
spur with one fruit and one spur with two
fruit were removed from four canopy posi-
tions on each tree (high north side, low north
side, high south side, and low south side).
The intact spurs with bourse shoots and
leaves were placed in plastic bags and trans-
ported on ice in a cooler to the laboratory.
For each spur, the number of bourse shoots
was recorded, along with the total length of
bourse shoots and the number of leaves per
spur. Each fruit was numbered with a perma-
nent marker to identify the spur, canopy posi-
tion, and tree. Each fruit was then weighed,
and the percentage of fruit surface covered
with red blush was estimated visually to the
nearest 10%. The fruit were then placed in
cold storage at 3 ± 2 �C and were removed in
early January. After 7 d at 20 �C, the number
of pits was recorded for each fruit.

Aspers orchard 2. Eight trees with moder-
ately heavy crops were selected from a block
of 8-year-old ‘Honeycrisp’ trees on M.9
NAKBT337 rootstock. Rows were oriented
northeast–southwest, and trees were spaced
at 4.3 � 1.2 m, trained as vertical axis, and
were �3.6 m tall. On 25 Aug. 2016, one
branch bearing three to five spurs with single
fruit, from the north and south side of each
tree at a height of �1.5 m aboveground, was
removed from each tree. Each fruit on a
branch was numbered sequentially from the
terminal end, and the branches along with
fruit attached were placed in plastic bags for
transportation to the laboratory. Branches,
spurs, and fruit were processed as described
earlier, except the distance from the terminal
bud of the branch to each fruit was also
recorded.

Rock Springs 2016. Seven 9-year-old
‘Honeycrisp’ trees on M.26 rootstock growing
at the Russell E. Larson Agricultural Research
Center at Rock Springs, PA (lat. 40.70944�N,
long. 77.9533�W) were selected. Rows were
oriented northwest–southeast, and trees were
trained as vertical axis, spaced at 2.75 � 1.5
m and were �3.6 m tall. Trees had light crop
loads as a result of a spring frost. On 6 Sept.
2016, one to three branches with fruit were
removed from three canopy positions on each
tree (low outside, high outside, or low inside)
on the east and west sides of each tree.
Branches consisted of 1-, 2-, 3-, and 4-year-
old wood. The low positions were �0.7 m
aboveground and the high position was �2.4
m aboveground. The reason that varying num-
bers of branches were sampled on different
trees was because some trees had more
branches with adequate numbers of fruit than
others. Branches with leaves and fruit were
placed in plastic bags and transported to the
laboratory for measurements. The number of
fruit per spur was recorded for each spur. The
total length of all shoots on each branch was
recorded, as were the number of leaves and
the maximum diameter of the 4-year-old
branch section. Each fruit was numbered to
identify the spur, canopy position, and tree.
Fruit were weighed, and the percentage of sur-
face of each fruit with red blush was estimated
to the nearest 10%. The fruit were then placed
in cold storage at 3 ± 2 �C and were removed
in early Jan. 2017. After 7 d at 20 �C, the
number of pits was recorded for each fruit.

Rock Springs 2019. Nine trees in the same
planting as described for 2016 were selected in
2019. Trees had a heavy crop load because
they were not chemically or hand-thinned to
ensure there would be spurs with multiple
fruit. The day before trees were harvested, one
spur with one, two, or three fruit with leaves
was removed from the inside and outside of
each tree from the lower part of the canopy
(�0.7 m aboveground) on the south and north
sides of each tree. In addition, spurs were
removed from the outside of the upper part of
the canopy �2.4 m aboveground on the south
side of the canopy. Spurs with fruit were
placed in bags and brought to the laboratory
for measurement. Fruit were removed from
the spur and labeled to designate the spur, can-
opy position, and tree. The number of leaves
per spur was recorded. The largest two leaves
per spur were measured to estimate leaf area.

Leaves were then placed in coin envelops,
dried at 70 �C, and weighed to estimate spe-
cific leaf weight (SLW), measured in milli-
grams per square centimeter. SLW was
recorded because it is a biological integrator
of light interception (Marini and Barden,
1981). Each fruit was weighed and the per-
centage of the fruit surface with red blush
was estimated visually to the nearest 10%.
Fruit were placed in cold storage at 3 ± 2 �C
and were removed in early Jan. 2020. After 7
d at 20 �C, the number of pits was recorded
for each fruit.

Statistical analyses. For each experiment,
there was a factorial treatment structure

consisting of two or more tree sides, two or
more canopy positions (inside vs. outside), or
number of fruit per spur in a randomized
complete block design, where trees were
blocks. Analysis of variance (ANOVA) was
performed with SAS’s PROC GLIMMIX
(SAS version 9.4; SAS Institute, Inc., Cary
NC) to test the hypotheses that bitter pit
severity (number of pits/fruit) and incidence
(proportion of fruit with bitter pit) were equal
for all levels of these factors and block was a
random effect. When interactions involving
only qualitative variables were significant,
LSmeans for each level of a variable were
compared within each level of the other vari-
ables (tree side, canopy position, and number
of fruit per spur) with the Slicediff option in
the LSmeans statement.

To determine whether continuous varia-
bles (distance from fruit to terminal bud, FW,
SLW, number of leaves per spur, and per-
centage of fruit red blush) were associated
with bitter pit severity, analysis of covariance
was performed with PROC GLIMMIX, in
which canopy position and number of fruit
per spur were included as indicator (qualita-
tive) variables, and continuous variables were
included as covariates or regressor variables.
Interaction terms for indicator variables and
continuous variables were also included in
the models. The 2019 experiment had an aug-
mented factorial structure (Marini, 2003)
because there were two canopy positions �
two tree sides in the lower canopy plus the
upper outside canopy position. In those cases,
data were analyzed with one-way ANOVA
and preplanned contrasts to test main effects
and interactions. Residuals for proportion
data from three experiments were not distrib-
uted normally before or after the proportion
data were transformed to the arcsine of the
square root of the proportion or the square
root of the proportion (P < 0.005). Therefore,
nontransformed proportion data were ana-
lyzed with the knowledge that the F tests may
not be valid.

The presence or absence of bitter pit for each
fruit was also recorded as a binary response (yes,
no). Binary data are often analyzed with binary
logistic regression because residuals are not dis-
tributed normally. Logistic regression is an exten-
sion of simple linear regression. However, logistic
models cannot account properly for random
effects such as blocks. Therefore, these data were
analyzed with PROC GLIMMIX using individ-
ual-event data as described by Kiernan (2018). To
avoid biased variance estimates for the variance
components, the maximum likelihood method
(Method=Quad) was requested. Options in the
model statement included the dist=binary and
link=logit to request the binomial distribution. The
predicted probabilities for each fruit were output to
a new dataset using the inverse link function in the
output statement [predicted(blup ilink)=predprob].
The predicted probabilities were then used in
PROC LOGISTIC to generate graphs of the recei-
ver–operating characteristic (ROC) curve and the
area under the ROC curve (AUC) (Kiernan, 2018).
PROC LOGISTIC was also used to perform tests
to compare the ROC curves from competing mod-
els (models with different regressor variables).
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The ROC curve was developed for opera-
tors of military radar receivers and is com-
monly used in psychophysics, medicine, and
radiology to predict a binary outcome (Park
et al., 2004). In our study there were four
potential outcomes when predicting whether
an apple would develop bitter pit: 1) true pos-
itive, when a model predicts correctly that an
apple will develop bitter pit; 2) true negative,
when a model predicts correctly that an apple
will not develop bitter pit; 3) false negative,
when a model predicts incorrectly that an
apple will not develop bitter pit; and 4) false
positive, when a model predicts incorrectly
that an apple will develop bitter pit. A ROC
curve is a plot of a test’s sensitivity (y-axis),
which is the true-positive rate, against 1-spe-
cificity (x-axis), which is the false-positive
rate (G€onen, 2006). To produce ROC curves,
the predicted probability is transformed into a
dichotomy using thresholds and reporting
results for each threshold, where each point
on the curve corresponds to a specific thresh-
old. The points can be connected to produce
an empirical ROC curve. ROC curves may
be enhanced by including a 45� line. This ref-
erence line represents the ROC curve for a
random guess (50% chance of classifying
correctly that an apple will develop bitter pit)
and is sometimes called the “chance diago-
nal.” A model that predicts bitter pit accu-
rately produces a curve that ascends very
quickly and vertically from the origin toward
the upper left corner of the plotting area, then
curves quickly to the right, with a long flat
line across the top of the chart (Fig. 1). AUC
is the most popular method of summarizing
the accuracy of a model with a single number
(G€onen, 2006). A model with predictions that
are 100% wrong has an AUC of 0.0; a model
with predictions that are 100% correct has an
AUC of 1.0. A model with an AUC of 0.5 is
correct half the time and is no better than flip-
ping a coin. In general, an AUC of 0.5 indi-
cates that the model has little discriminatory
ability and cannot classify accurately fruit
that will develop bitter pit. An AUC of 0.7 to
0.8 is considered acceptable, 0.8 to 0.9 is con-
sidered excellent, and more than 0.9 is con-
sidered outstanding (Hosmer and Lemeshow,
2000). AUC curves of a variable are often
compared with chance (Shin and Coulter
2009); when the estimated AUC is statisti-
cally greater than 0.5, there is evidence the
model is useful for classifying correctly fruit
with bitter pit and fruit without bitter pit.

Results

Aspers orchard 1. The side of the tree
from which fruit were harvested did not affect
significantly the number or length of bourse
shoots per spur, number of leaves per spur, or
FW (data not shown). The percentage of the
fruit surface colored red was slightly greater
for the south side than the north side of the
tree (37.8% vs. 28.3%, P = 0.084), and num-
ber of pits per fruit was not affected signifi-
cantly by tree side (north, n = 13.4; south, n =
10.1; P = 0.425). To predict bitter pit severity
(number of pits per fruit), a model was fit

with tree side, canopy position, distance from
the terminal, number of bourse shoots, bourse
shoot length, fruit red color, and FW as inde-
pendent variables. After manual backward
elimination of nonsignificant variables, only
distance from the terminal and FW were sig-
nificant (R2 = 0.52). Bitter pit severity in-
creased linearly with increasing FW and
distance from the terminal (Fig. 2).

When the presence of bitter pit was
treated as a binary variable, the logistic model
with tree side, FW, and the interaction of tree
side � FW was significant (P = 0.04). The
estimated probability of a fruit developing
bitter pit increased with increasing FW, and
was greater for the north side than the south
side of the tree (Fig. 3). The probability of a
small fruit (200 g) developing bitter pit was

0.5 and 0.8 for fruit harvested from the south
and north sides of the tree, respectively. The
probability of large fruit (>300 g) developing
bitter pit was nearly 1.0 regardless of tree
side. The AUCs were 0.617, 0.628, and
0.749, respectively, for models with only the
distance from the terminal, tree side, or FW
(Fig. 4). The AUC for the multiple logistic
regression GLIMMIX model containing all
three variables was 0.857.

Contrasts comparing each model to “cha-
nce,” indicated that only the logistic model
with FW and the GLIMMIX model with all
three variables were significantly better than
chance (P < 0.001). GLIMMIX is preferred
because it contains more than one significant
variable and accounts for the random effect
of tree.

Fig. 1. Example of two operating characteristic curves. The accurate model predicts accurately the
probability that an apple will develop bitter pit. The chance diagonal represents a model with a 50%
chance of classifying correctly an apple as developing bitter pit. The accuracy of the poor model is
slightly better than chance.

Fig. 2. Three-dimensional scatterplot showing the relationship between the number of pits per fruit after
storage as influenced by fruit weight (FW) and distance (Dist.) from the shoot terminal to the fruit-
ing spur. The multiple regression model is as follows: No. of pits per fruit = –36 – 83 1
0.164 (FW) 1 0.247 (Dist.); R2 = 0.52, P = 0.0001, N = 60.
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Aspers orchard 2. Because branches had
varying numbers of fruit, the number of
observations per tree side was highly variable,
with a total of 8, 33, 37, and 12 fruit from the
east, north, south, and west sides of the tree,
respectively. Average FW was 165, 208, 234,
and 168 g for the east, north, south, and west
sides of the tree. The mean number of pits per
fruit was 11.1, 15.5, 16.8, and 18.4 for fruit
from the east, north, south, and west sides of
the tree. Because of the lack of observations
for the east and west sides, the LSmeans from
the four-way ANOVA could not be esti-
mated, so tree side was deleted from the
model. The influence of canopy position for
most spur characteristics depended on crop
load. The canopy position � crop load inter-
action was significant for number of bourse
shoots per spur, leaves per spur, FW, percent-
age surface red blush, and number of pits per
fruit (Table 1). For trees with high crop loads,
spurs from the upper canopy had more bourse
shoots and leaves per spur than spurs from the
lower canopy. For trees with low crop loads,
FW was greatest for spurs from the lower
canopy of trees. The opposite was true for
trees with high crop loads, where FW as low-
est for spurs from the lower canopy. In addi-
tion, for trees with low crop loads, red color
was greater for fruit from the upper canopy
than fruit from the lower canopy. For trees
with low crop loads, number of pits per fruit
was greatest for fruit from the upper canopy.
In contrast, for trees with high crop loads,
number of pits per fruit was lowest for fruit
from the upper canopy. The proportion of
fruit developing bitter pit was affected only
by canopy position, with 49% and 87% of the
fruit from the upper and lower canopy,
respectively. Shoot length and number of
leaves per spur were correlated (R2 = 0.84,
P = 0.001, n = 82). To avoid collinearity, only
the number of leaves per spur and fruit per
spur were included in models to predict pits
per fruit, and there was an interaction between
the two variables (P = 0.001). For fruit on
spurs with a single fruit, the number of pits
per fruit related positively to number of leaves
per spur. In contrast, the relationship was

negative when there were two fruit per spur,
and the relationships for both models were
poor (R2 < 0.24, Fig. 5). One explanation for
the interaction, may be that spurs with one
fruit tended to have more leaves than spurs
with two fruit.

The binary analysis performed with
PROC GLIMMIX with four indicator varia-
bles (crop load, tree side, canopy height, and
fruit per cluster) plus two covariates (FW
and leaves per spur) had several significant

higher order interactions involving crop load
and number of leaves per spur. When results
from PROC GLIMMIX were compared with
PROC LOGISTIC, P values and AUCs were
different (AUCs were 0.864 vs. 0.797 for
GLIMMIX vs. LOGISTIC, respectively) be-
cause the logistic model does not account for
the random effect of tree. Based on the result-
ing ROC and AUC curves, the two single-
variable models with the highest AUC were
crop load (AUC = 0.72) and leaves per limb
(AUC = 0.582, Fig. 6). Only crop load was
significantly better than chance (P < 0.05).
Based on the AUC, leaves per limb was poor
at classifying correctly a fruit that will
develop bitter pit, but the model with crop
load was acceptable. However, the model
containing both leaves per limb and crop load
was excellent (AUC = 0.86). As leaves per
limb increased, the probability of a fruit
developing bitter pit declined, and fruit from
trees with low crops had a greater probability
of developing bitter pit than fruit from trees
with high crop loads (Fig. 7).

Rock springs 2016. Number and length of
bourse shoots per spur and the number of
leaves per spur were not affected significantly
by tree side, canopy position, or number of
fruit per spur (data not shown). The effect of
tree side on FW depended on the number
of fruit per spur because the interaction of tree
side� number of fruit per spur was significant

Fig. 3. The relationship between predicted probability (Prob.) of a ‘Honeycrisp’ fruit developing bitter
pit and fruit weight as influenced tree side for Aspers orchard 1.

Fig. 4. Empirical receiver–operating characteristic (ROC) curves showing the diagnostic abilities of
four models to predict the probability of a ‘Honeycrisp’ fruit harvested from Aspers orchard 2 to
develop bitter pit. Simple logistic regression models contained distance from the shoot terminal
(term.), but to the spur (brown line), the side of the tree (green line), and fruit weight (red line).
The multiple logistic regression GLIMMIX model contains all three variables (blue line). Values in
parentheses are areas under the curve and give the rate a of successful classification by model.
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at the 0.053 level. For spurs on the east side of
the tree with one or two fruit per spur, FW
was 238 g and 213 g, respectively. For the
west side, FW was 254 g and 201 g, respec-
tively, for spurs with one or two fruit. FW was
also significantly less for fruit from the inside
low-canopy position (210 g) than for fruit
from the outside high- and outside low-canopy
positions (242 and 249 g, respectively, P =
0.016). Fruit from the east side of the tree
were redder than fruit from the west side
(38% vs. 31%, P = 0.031). Fruit from the
upper outside and lower outside were redder
(48% and 41%, respectively, P = 0.001) than
fruit from the lower inside (14%) of the can-
opy. Fruit from spurs with one fruit were red-
der than fruit from spurs with two fruit (38%
vs. 31%, P = 0.033). The number of pits per
fruit was affected by the interaction of tree
side and number of fruit per spur (P = 0.006).
Fruit on the east side of the tree averaged
9.5 and 15.9 pits for spurs with one or two
fruits respectively. In contrast, fruit on the
west side of the tree averaged 11.5 and 5.1 pits
for spurs with one or two fruit, respectively.

Results from fitting a covariance model
for pits per fruit indicated that FW and the
FW � canopy position interaction were sig-
nificant. For the upper canopy position, pits
per fruit related positively to FW (data not
shown). For the lower canopy position, pits

per fruit was not related to FW. Pits per fruit
was not related to tree side, fruit per spur,
fruit red color, or leaves per spur.

Analysis of bitter bit incidence with the
same indicator variables showed that FW,
canopy position, FW � canopy position, and
tree side � number of fruit per spur were sig-
nificant. In general, fruit from spurs with one
fruit had a greater incidence of bitter pit than
fruit from spurs with two fruit, but it
depended on tree side (P = 0.019). On the
west side of the tree, spurs with one fruit had
the greatest incidence of bitter pit (81%) and
spurs with two fruit had the lowest incidence
(34%). Fruit from the east side were interme-
diate. Fruit from the upper canopy had a

lower incidence of bitter pit than fruit from
the lower canopy or the interior canopy (P =
0.033). For the ROC curve, the AUC was
0.712 for FW and 0.605 for canopy position,
and both were significant at the 5% level (Fig.
8). The AUC was 0.76 for the LOGISTIC
model and 0.84 for the GLIMMIX model con-
taining both FW and canopy position. This
model had an excellent ability to classify cor-
rectly which fruit will develop bitter pit. The
probability that a fruit will develop bitter pit
increased with increasing FW (Fig. 9). In addi-
tion, fruit sampled from the lower interior can-
opy position had a greater probability of
developing bitter pit than fruit from the upper
outside canopy position. The lower outside
canopy position was intermediate (Fig. 9). For
small fruit (200 g), the probability of a fruit
developing bitter pit was 0.4, 0.5, and 0.75 for
fruit from the upper outside, lower outside,
and lower inside canopy positions, respec-
tively. For large fruit (300 g), the probability
of a fruit developing bitter pit was 0.85, 0.9,
and 0.98, for fruit from the upper outside,
lower outside, and lower inside canopy posi-
tions, respectively.

Rock Springs 2019. Leaves from spurs on
the lower outside of the canopy had a greater
SLW than leaves on the lower inside of the
tree (6.7 vs. 5.6 mg�cm–2, P = 0.001), and the
SLWwas greater for spurs from the upper out-
side canopy position than the lower outside
canopy position (7.4 vs. 6.7 mg�cm–2, P =
0.001). Fruit from the upper outside canopy
were redder than fruit from the lower outside

Fig. 5. The relationship between pits per fruit and
number of leaves per spur for ‘Honeycrisp’ fruit
as influenced by the number of fruit per spur har-
vested from Aspers orchard 2. The regression
equations are the following: for 1 fruit/spur,
Pits = 2.87 1 1.32 (leaves), R2 = 0.23, P =
0.007, n = 31; for 2 fruit/spur = Pits = 21.63 –
0.725 (leaves), R2 = 0.084, P = 0.043, n = 51.

Table 1. The influence of crop load and canopy height on the number and length of bourse shoots
per spur, number of leaves per spur, average fruit weight (FW), red fruit color, and pits per fruit
after cold storage for ‘Honeycrisp’ apples harvested from Aspers orchard 2 in 2016.

Crop load
Canopy

ht
Bourse

shoots/spur
Shoot length/
spur (cm)

Leaves/
spur FW (g)

Red
color (%)

Pits/
fruit

High High 1.9 a 21.1 15.7 az 217 a 17.3 a 4.7 a
High Low 1.2 b 16.6 9.8 b 192 a 20.8 a 8.9 a
Low High 1.3 Ay 21.4 12.6 A 242 A 48.9 A 31.6 A
Low Low 1.7 A 14.8 14.5 A 263 A 14.8 B 13.3 B
P valuex

Crop load 0.221 0.217 0.535 0.049 0.466 0.528
Ht 0.006 0.489 0.109 0.050 0.309 0.934
Crop � ht 0.002 0.667 0.039 0.049 0.002 0.050

zValues within high crop load followed by similar lowercase letters do not differ at the 5% level of
significance, by slice diff in GLIMMIX.
yValues within low crop load followed by similar uppercase letters do not differ at the 5% level of
significance, by slice diff in GLIMMIX.
xFrom analysis of variance.

Fig. 6. Empirical receiver–operating characteristic (ROC) curves showing the diagnostic abilities of
four models to predict the probability of a ‘Honeycrisp’ fruit harvested from Aspers orchard 2 to
develop bitter pit. Simple logistic regression models contained crop load (brown line) or number of
leaves per limb (green line). Multiple logistic regression models containing both variables were
developed with PROC LOGISTIC (blue line) and PROC GLIMMIX (red line). The GLIMMIX
model is better because it accounts for the random effect of tree properly. Values in parentheses are
areas under the curve and give the rate a of successful classification by model.
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canopy (73% vs. 65%, P = 0.001), and fruit
from the lower outside canopy were redder
than fruit from the lower insider canopy
(65% vs. 52%, P = 0.003). FW was greater for
fruit from the lower outside of the canopy
than from the lower inside canopy (204 vs.
190 g, P = 0.003). The ROC curve from the
LOGISTIC model showed that number of fruit
per spur and FW influenced significantly the
probability that a fruit will develop bitter pit
(P = 0.05). The AUC for the GLIMMIX
model containing both variables was 0.72,
indicating that the model is acceptable for cate-
gorizing which fruit will develop bitter pit

(Fig. 10). Thus, the probability of a fruit devel-
oping bitter pit increased linearly with increas-
ing FW. In contrast, the probability of a fruit
developing bitter pit declined with increasing
number of fruit per spur (Fig. 11). For exam-
ple, the probability that medium-size fruit
(250 g) would develop bitter pit was 0.5, 0.39,
and 0.3 for fruit from spurs with one, two, and
three fruit, respectively.

Discussion

General results. Various characteristics of
fruit and spurs at different canopy positions

were quantified in our study to identify fruit
that are most likely to develop bitter pit. Spur
and fruit characteristics were not affected con-
sistently by canopy position. However, across
the four experiments, bitter pit was often asso-
ciated with certain characteristics of fruit and
spurs, and it sometimes depended on canopy
position. Incidence of bitter pit (proportion of
fruit with bitter pit) was influenced more con-
sistently by canopy position, spur characteris-
tics, and FW than was bitter pit severity
(number of pits per fruit). Large fruit had con-
sistently greater probabilities of developing
bitter bit than small fruit. Fruit from spurs
with one fruit and spurs with many leaves had
a greater probability of developing bitter pit
than fruit from spurs with multiple fruit and
spurs with few leaves. To our knowledge, this
is the first study in which bitter pit was evalu-
ated for varying numbers of fruit per spur, and
the effect of fruit per spur often depended on
other factors, especially FW.

Appropriateness of logistic regression.
Serra et al. (2016) used logistic regression to
compare distributions of bitter pit incidence
under netting, but our study is the first to use
logistic regression to estimate the probability
that individual fruit will develop bitter pit.
Logistic regression has two advantages over
the ANOVA and regression approaches typi-
cally used to analyze the proportion of apples
developing bitter pit. First, logistic regression
provides information about individual fruit
rather than an average estimated from a sample
of multiple fruit of varying sizes and from
spurs with varying numbers of fruit. Therefore,
logistic regression uses information related to
fruit-to-fruit variation. Second, residuals from
proportion data are usually not distributed nor-
mally, and commonly used transformations
often do not correct the problem. Proportion
data are usually transformed in an attempt to
satisfy assumptions for ANOVA or regression
analysis. In most cases, authors do not indicate
whether the assumptions were tested before or
after data transformation. However, proportion
data subjected to the arcsine or square root
transformations often do not satisfy the
assumptions for parametric tests adequately
(Llewelyn, 1968; Marini et al., 1993). Ahrens
et al. (1990) also reported that the arcsine
transformation can have adverse effects on
some datasets. In our study, residuals for pro-
portion data were distributed normally for only
one of the four datasets, as indicated by resid-
ual plots and the four test statistics generated
by SAS’s PROC UNIVARIATE. Logistic
regression was developed for data with bino-
mial distributions. Warton and Hui (2011)
stated that “transformation is recommended in
statistical texts for biologists and ecologists,
but not in many applied regression texts aimed
at practicing statisticians because the arcsine
transformation has been superseded by more
modern methods of analysis such as logistic
regression” (p. 3).

In previous research, the proportion of
fruit developing bitter pit was usually esti-
mated from bulk samples of fruit harvested
from individual trees (Baugher et al., 2017), a
group of trees (Al Shoffe et al., 2019),

Fig. 7. The influence of crop load on the relationship between the probability (prob.) of ‘Honeycrisp’
fruit developing bitter pit and number of leaves per limb for Aspers orchard 2.

Fig. 8. Empirical receiver–operating characteristic (ROC) curves showing the diagnostic abilities of
four models to predict the probability of ‘Honeycrisp’ fruit harvested from Rock Springs in 2016 to
develop bitter pit. Simple logistic regression models contained canopy position (pos) (red line) or
fruit weight (fw) (green line). Multiple logistic regression models containing both variables were
developed with P ROC LOGISTIC (blue line) and PROC GLIMMIX (brown line). The GLIMMIX
model is better because it accounts for the random effect of tree properly. Values in parentheses are
areas under the curve and give the rate a of successful classification by the model.
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canopy positions within trees (Jackson and
Sharples, 1971; Kalcsits et al., 2019), or fruit
size categories (Ferguson and Watkins, 1992;
Ferguson and Triggs, 1990). After storage,
the proportion of fruit developing bitter pit
correlated with the average FW for the same
bulk sample. In other cases, samples of fruit
were divided, and some fruit were used for
mineral analysis, and the average concentra-
tion of calcium or ratios of elements corre-
lated with the proportion of the remaining
sample of fruit that developed bitter pit
(Baugher et al., 2017; Ferguson and Watkins,
1992; Perring and Jackson, 1975; Serban and
Kalcsits, 2018). Pooling fruit samples does

not characterize the relationship between indi-
vidual fruit and bitter pit. For example, Broom
et al. (1998) reported that the relationship
between FW and fruit calcium concentration
differed when tree mean values were compared
as opposed to using individual fruit. Logistic
regression is an effective statistical method for
studying bitter pit because a normal distribution
of residuals is not required, and inferences can
be made concerning individual fruit rather than
averages estimated from a sample of fruit with
varying characteristics. This supports the work
of Perring and Jackson (1975), in which aver-
age fruit calcium and average FW correlated
negatively for 25-fruit bulk samples. However,

when individual apples were analyzed, the cal-
cium concentration in individual fruit was often
unrelated to FW. Perring and Jackson (1975)
suggested that canopy positional effects may
override the inverse relationship between cal-
cium concentration and FW of individual fruit
because the relationship between calcium con-
centration and FW differed for fruit sampled
from the east and west sides of the tree. A great
deal of information is lost by pooling samples
of fruit containing fruit of varying sizes, and
fruit from spurs with varying numbers of fruit
and leaves, which cannot be accounted for in a
parametric statistical model.

Our study is the first we are aware of in
which bitter pit development could be esti-
mated for individual fruit. Such analyses
were not possible before the development of
software for generalized linear mixed models,
such as PROC GLIMMIX, which extends the
capabilities of mixed models to non-Gaussian
distributions (Schabenberger, 2005). Like lin-
ear regression, logistic regression cannot be
used for experiments in which the experimen-
tal material is sampled destructively for fruit
mineral analysis before fruit develop bitter
pit. However, logistic regression is particu-
larly appropriate when fruit are analyzed non-
destructively for elements as reported by
Kalcsits et al. (2019).

Bitter pit severity. Bitter pit severity (pits
per fruit) is rarely reported because fruit with
a single pit are unsaleable; however, it was
recorded in our study as a continuous variable
to determine whether severity was related to
various fruit, spur, and canopy characteristics.
Bitter pit severity was affected by canopy
position in three of the four experiments, and
it was related to FW in all four experiments.
However, the relationship between bitter pit
severity and FW usually depended on other
factors, such as canopy position and/or num-
ber of fruit per spur. Our bitter pit severity
results support the mineral analysis results of
Volz et al. (1994), in which FW and fruit cal-
cium concentration varied with spur age.
However, their results differed with cultivar.
For ‘Braeburn’, 3-year old spurs had lower
FW and greater fruit calcium concentrations
than fruit on 2-year-old spurs. For ‘Granny
Smith’, 3-year-old spurs had small fruit, but
also had lower calcium concentrations than 2-
year-old spurs. Kalcsits et al. (2019) reported
a quadratic relationship between bitter pit inci-
dence and distance from the tree periphery.
Fruit sampled closest and farthest from the
trunk had the greatest incidence of bitter pit.

Bitter pit severity was greatest for fruit on
spurs with one fruit and few leaves. Although
we did not record spur age, the relationship
between fruit calcium and leaves per spur
may vary with spur age. Volz et al. (1994)
removed leaves to create a range of leaves per
spur. They found that the calcium concentra-
tion of individual fruit increased with increas-
ing total leaf area per spur for fruit on 2-year
spurs and 1-year terminals, but not for fruit on
1-year lateral spurs. They did not report the
relationship between leaves per spur and FW
or calcium concentration, which may also
influence bitter pit. In a similar experiment,

Fig. 9. The probability (prob.) of ‘Honeycrisp’ fruit developing bitter pit as affected by fruit weight for
fruit harvested from three canopy positions at Rock Springs in 2016.

Fig. 10. Empirical receiver–operating characteristic (ROC) curves showing the diagnostic abilities of
four models to predict the probability of ‘Honeycrisp’ fruit harvested from Rock Springs in 2016 to
develop bitter pit. Simple logistic regression models contained fruits per spur (light-blue line) or
fruit weight (FW) (red line). Multiple logistic regression models containing both variables were
developed with P ROC LOGISTIC (dark-blue line) and PROC GLIMMIX (brown line). The
GLIMMIX model is better because it accounts for the random effect of tree properly. Values in
parentheses are areas under the curve and give the rate of successful classification by the model.
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Jones and Samuelson (1983) altered spur tran-
spiration by removing some or all of the
leaves or by enclosing leaves in polyethylene
bags. Their treatments reduced the calcium
concentration in the fruit. Because spur age,
distance from the trunk, and shade are usually
confounded, it is difficult to study the individ-
ual effects on bitter pit. Our results indicate
that using bitter pit incidence is preferable
to bitter pit severity as a response variable
while studying bitter pit, because the mean
number of pits per fruit is sensitive to a few
fruit with many pits.

Crop load and bitter pit. High tree-to-tree
crop load variation in Aspers orchard 2
allowed us to use crop load as an indicator
variable. Fruit from trees with light crop
loads had the greatest probability of develop-
ing bitter pit. This supports previous reports
in which incidence of bitter pit related nega-
tively to crop load (Ferguson and Watkins,
1989; Robinson and Lopez, 2012). Because
FW is usually related negatively to crop load,
separating the individual effects of the two
variables on bitter pit is not possible when
data are reported as a proportion of the fruit
with bitter pit unless fruit are grouped into
different fruit size categories. Recording bit-
ter pit as a binary variable in our study, we
found that the probability of a fruit developing
bitter pit increased with increasing FW for
trees with both low and high crop loads (Fig.
8). Therefore, small fruit on a tree will likely
develop less bitter pit regardless of crop load.
Perring and Jackson (1975) reported greater
FW on light-cropping trees, and large fruit
tended to have low calcium concentrations.
Ferguson and Watkins (1992) also found that
fruit from light-cropping trees had lower con-
centrations of calcium, along with greater
concentrations of potassium, and a greater
incidence of bitter pit regardless of FW.

Canopy position and bitter pit. Variability
in bitter pit may be related to factors linked to
canopy position such as shade (Jackson and
Sharples, 1971; Smock, 1941), which can
influence fruit size (Jackson and Sharples,
1971; Marini and Barden, 1982b) transpiration
(Wiersum, 1966), and cation availability to the

fruit (Cline and Hanson, 1992; Marini and
Barden, 1982a; Tadesse et al., 2001; Tromp
and Oele, 1972; Wiersum, 1966; Wilkinson,
1968). Witney et al. (1991) increased the inci-
dence of bitter pit 4-fold by shading ‘Golden
Delicious’ fruiting spurs with brown paper
bags. When de Freitas et al. (2013) compared
fruit from shaded and nonshaded trees, fruit
from shaded trees had more bitter pit and
greater concentrations of calcium and magne-
sium. They hypothesized that shading influ-
enced bitter pit by altering the distribution of
calcium within fruit because shaded fruits had
more calcium bound to cell walls. Previous
reports of canopy position on bitter pit were
inconsistent. For example, in England and
New Zealand, fruit from the tree interior and
from the lower north side of vigorous ‘Cox’s
Orange Pippin’ trees were smaller, had less
red color, greater calcium concentrations, and
a lower incidence of bitter pit than fruit from
other canopy positions (Ferguson and Triggs,
1990; Jackson and Sharples, 1971). To the
contrary, Kalcsits et al. (2019), working with
‘Honeycrisp’ in intensive orchards in Wash-
ington, found that fruit in the upper canopy
had high calcium and low bitter pit. In two of
our four experiments, bitter pit was affected by
canopy position, but the effect of canopy posi-
tion depended on other factors, especially FW.
For example, at Aspers orchard 1, the proba-
bility of developing bitter pit was greatest for
large fruit in the upper canopy on the north
side of the tree. For Rock Springs in 2016,
large fruit from the canopy interior had the
greatest probability of developing bitter pit.

We also collected fruit from different can-
opy positions in a ‘Honeycrisp’ orchard in
Fishertown, PA, in 2019 with a history of
severe bitter pit. The trees were on M.7 root-
stock and were very vigorous, with most ter-
minal shoots exceeding 45 cm. There was a
high incidence of bitter pit regardless of can-
opy position or number of fruit per spur. For
the 24 combinations of two tree sides, two
canopy heights, two distances from the trunk,
and three levels of fruits per spur, the number
of pits per fruit ranged from 15.1 to 24.0, and
the proportion of fruit with bitter pit ranged

from 63% to 88%. Bitter pit severity, bitter
pit incidence, and the probability of a fruit
developing bitter bit were not affected signifi-
cantly by any of the variables recorded for
our study. This supports our previous report
in which bitter pit related positively to tree
vigor and terminal shoot length (Baugher
et al., 2017), and tree vigor may be the most
important variable influencing bitter pit.

Implications for research fruit sampling.
These results can be used to improve protocols
for obtaining fruit samples that better represent
the population of fruit on a tree for predicting
the probability that fruit will develop poststor-
age bitter pit. Kalcsits et al. (2019) suggested
that fruit should be sampled from different
canopy positions because microclimate may
contribute to bitter pit development. We agree
that canopy position should be used as a crite-
rion for sampling fruit, but spur characteristics,
such as fruit size, number of fruit per spur,
length of bourse shoots, and number of leaves
per spur, as well as crop load, should also be
considered. Results from our study and others
may not have broad application. Multisite
studies with varying tree sizes, rootstocks, and
climatic factors are needed to verify previously
published data.

Implications for managing bitter pit.Results
from this and previous studies can be used
to modify orchard practices to minimize the
incidence of bitter pit. To reduce the likeli-
hood of spring frost and ensure moderate to
heavy crops that are less prone to bitter pit,
‘Honeycrisp’ should be planted on excellent
sites with good, cold air drainage, and frost pro-
tection should be considered. In our experi-
ments in which the number of fruit per spur
was recorded, the probability of a fruit develop-
ing bitter pit was greatest for spurs with one
fruit. Commercial growers typically apply
chemical thinners followed by hand-thinning to
avoid multiple fruit per spur and enhance FW.
Our results support previous reports in which
FW related negatively to the number of fruit
per spur (Black et al., 2000; Denne, 1963). Our
results also indicate that the likelihood of bitter
pit development increased with increasing FW
(Fig. 10) and decreased with increasing num-
bers of fruit per spur (Fig. 11). For each addi-
tional fruit per spur, FW declined by �16 g,
and the probability of developing bitter pit
decreased by �10%. Therefore, one way to
reduce the severity of bitter pit may be to retain
two fruit per spur while hand-thinning, espe-
cially on trees with moderate to light crops.
‘Honeycrisp’ trees often produce large fruit,
and the moderate loss of fruit size associated
with multiple fruit per spur may not be eco-
nomically deleterious. If hand-thinning is
required to adjust crop load, and if early-season
fruit size is adequate, then orchard workers
may be instructed to retain more than two fruit
per cluster. Workers should also be instructed
to retain fruit on spurs with many leaves and
long bourse shoots. At harvest, fruit from trees
with low crop loads can be placed in bins des-
ignated for immediate sale.

In conclusion, our study showed that logis-
tic regression can be used to predict the proba-
bility that individual fruit will develop bitter

Fig. 11. Scatterplot with predicted lines showing the relationship between the probability of
‘Honeycrisp’ fruit developing bitter pit, and fruit weight (FW) as influenced by the of number of
fruits per spur on for Rock Springs 2019.
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pit. Logistic regression is a powerful tool that
can be used in many other types of horticultural
research in which a binary response is rec-
orded, such as seed germination, fruit set, fruit
abscission, plant survival, and plant flowering.
The relationship between bitter pit and FWwas
influenced inconsistently by canopy position.
Although bitter pit was affected by the interac-
tive effects of several variables, bitter pit was
most often influenced by FW, number of fruit
per spur, and number of leaves per spur.
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