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Abstract. An accurate predictive model for estimating the timing of seasonal phenological
stages of grape (Vitis L.) would be a valuable tool for crop management. Currently the
most used index for predicting the phenological timing of fruit crops is growing degree
days (GDD), but the predictive accuracy of the GDD index varies from season-to-season
and is considered unsatisfactory for grapevines grown in the midwestern United States.
We used the methods of multiple regression to analyze and model the effects of multiple
factors on the number of days remaining until each of four phenological stages
(budbreak, bloom, veraison, and harvest maturity) for five cold-climate wine grape
cultivars (Frontenac, La Crescent, Marquette, Petit Ami, and St. Croix) grown in central
Iowa. The factors (predictor variables) evaluated in models included cultivar, numerical
day of the year (DOY), DOY of soil thaw or the previous phenological stage, photoperiod,
GDD with a base temperature of 10 8C (GDD 10), soil degree days with a base
temperature of 5 8C (SDD 5), and solar accumulation. Models were evaluated
for predictive accuracy and goodness of fit by calculating the coefficient of determination
(R2), the corrected Akaike information criterion (AICc), and the Bayesian information
criterion (BIC); testing for normal distribution of residuals; and comparing the actual
number of days remaining until a phenological stage with the number of days predicted
by models. The top-performing models from the training set were also tested for
predictive accuracy on a validation dataset (a set of data not used to build the model),
which consisted of environmental and phenological data recorded for one popular
Midwest cultivar (Marquette) in 2019. At all four phenological stages, inclusion of
multiple factors (cultivar and four to six additional factors) resulted in predictive models
that were more accurate and consistent than models using cultivar and GDD 10 alone.
Multifactor models generated from data of all five cultivars had high R2 values of 0.996,
0.985, 0.985, and 0.869 for budbreak, bloom, veraison, and harvest, respectively, whereas
R2 values for models using only cultivar and GDD 10 were substantially lower (0.787,
0.904, 0.960, and 0.828, respectively). The average errors (differences from actual) for the
top multifactor models were 0.70, 0.84, 1.77, and 3.80 days for budbreak, bloom,
veraison, and harvest, respectively, and average errors for models that included only
cultivar and GDD 10 were much larger (5.27, 2.24, 2.79, and 4.29 days, respectively). In
the validation tests, average errors for budbreak, bloom, veraison, and harvest were 1.92,
1.31, 0.94, and 1.67 days, respectively, for the topmultifactormodels and 10.05, 2.54, 4.23,
and 4.96 days, respectively, for models that included cultivar and GDD 10 only. Our
results demonstrate the improved accuracy and utility of multifactor models for
predicting the timing of phenological stages of cold-climate grape cultivars in the
midwestern United States. Used together in succession, the models for budbreak, bloom,
veraison, and harvest form a four-stage, multifactor calculator for improved prediction
of phenological timing. Multifactor models of this type could be tailored for specific
cultivars and growing regions to provide the most accurate predictions possible.

A mechanism that accurately estimates
the timing of annual phenological stages of
wine grapes or other fruit crops would be a
valuable tool for crop management. In viti-
culture, the ability to predict phenological
stages would be beneficial in planning and
preparation for pruning, pesticide applica-
tion, canopy management of shoot position-
ing and leaf or shoot removal, cluster
thinning, and harvest. Past efforts to develop
a predictive index for phenological timing

have focused mainly on measures of seasonal
heat accumulation, and the most commonly
investigated index for use with fruit crops is
GDD (García de Cort�azar-Atauri et al., 2009;
Gentilucci and Burt, 2018; Zapata et al.,
2017). Although the GDD index has been
used successfully to estimate phenological
timing in moderate climates (Fraga et al.,
2016; Verdugo-V�asquez et al., 2017), its
accuracy can vary greatly from season-to-
season and it is considered inadequate as a

stand-alone index for predicting the pheno-
logical timing of cold-climate wine grapes
grown in the midwestern United States
(Fern�andez-Gonz�alez et al., 2013; Schrader
et al., 2019). Nearly all research on pheno-
logical timing of grapevines has focused on
describing the effects of environmental fac-
tors on select phenological stages and pre-
scribing a threshold at which each stage will
likely be accomplished. Reports of true pre-
dictive models that use real-time environ-
mental data to estimate the arrival of a future
phenological stage within the same season do
not yet exist in the literature. The current
report describes the development and evalu-
ation of a prediction system that uses values
from multiple factors to provide real-time
predictions for the phenological timing of
cold-climate wine grapes. The cultivars eval-
uated in this study are of strong interest to
viticulturists in the midwestern and north-
eastern United States, and information about
their characteristics and culture is widely
available (Minnesota Grape Growers Assn.,
2016; Schrader et al., 2019, 2020; Smiley
et al., 2016).

Although phenological models based on
only air temperature and heat accumulation
are predominant in the literature (Fraga et al.,
2016; García de Cort�azar-Atauri et al., 2009;
Verdugo-V�asquez et al., 2017), researchers
have demonstrated that other environmental
factors can affect phenological timing
(Basler and K€orner, 2014; Greer et al.,
2006; Kliewer, 1975; Rezazadeh and Stafne,
2018; Schaber and Badeck, 2003; Way and
Montgomery, 2015; Williams et al., 1985).
The influence of daylength (photoperiod) as
an environmental cue in directing seasonal
phenology has been demonstrated with
grapevines and other woody plants (Basler
and K€orner, 2014; Rezazadeh and Stafne,
2018; Schaber and Badeck, 2003; Way and
Montgomery, 2015). Schrader et al. (2019)
proposed that photoperiod may be more im-
portant in directing annual phenology than
common theory suggests, but that the impor-
tance of photoperiod is not easily observed
except during years when heat accumulation
and photoperiod are poorly correlated. Root-
zone temperatures and solar radiation also
have been shown to affect phenological tim-
ing of grapevines and other fruit crops (Greer
et al., 2006; Kliewer, 1975; Williams et al.,
1985). With the increase in availability of
environmental data from both private and
public weather stations over the past few
decades, it is now feasible to include data
such as root-zone temperature and solar ac-
cumulation in models along with air temper-
ature data and photoperiod to improve
predictive accuracy. We hypothesize that
multifactor models could be especially ben-
eficial for use in areas with cold and variable
climate, areas such as the midwestern United
States where air temperatures and heat accu-
mulation rates are often volatile and vary
from year-to-year.

Dunkler et al. (2014) describe statistical
models as ‘‘simple mathematical rules de-
rived from empirical data describing the
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association between an outcome and several
explanatory variables.’’ There are three main
purposes for developing and using statistical
models: 1) prediction, 2) explanation, and 3)
description (Heinze et al., 2018; Shmueli,
2010). Descriptive models are meant to cap-
ture the association between dependent and
independent variables (Shmueli, 2010), but
do not consider causality in a formal manner
(Heinze et al., 2018). Explanatory models are
used to estimate causal effects and summa-
rize the impacts of independent variables,
with particular emphasis placed on minimiz-
ing bias (Heinze et al., 2018). The primary
goal of predictive models is to accurately
predict an outcome value from a set of inde-
pendent variables (predictors) (Heinze et al.,
2018). The aim of our research was to de-
velop predictive models that would be suit-
able for estimating the timing of phenological
stages within a reasonable range of error.
Although we believe that causal relationships
exist among the variables in our project, the
goals of our research were not to provide
proof of causality but to develop accurate and
useful predictive models based on empirical
research data.

Multiple regression is used routinely in
research studies for modeling processes in
plant biology (Bock et al., 2011; Matas et al.,
2005; Webb et al., 2012), and has been used
in many studies to develop predictive models
for plant phenology (Anderson et al., 1978;
Constable and Rose, 1988; Weikai and Wal-
lace, 1998). When using multiple regression
to build predictive models, one of the goals is
to balance accuracy with efficiency, to de-
velop and choose the most accurate model
possible by including all useful factors, and
excluding factors that are not useful (Heinze
et al., 2018). If a model is excessively com-
plex, it becomes impractical for use; how-
ever, if too much emphasis is placed on
simplicity (minimal number of factors), the
model is likely to become inaccurate as
values of predictors move away from norms
(Burnham and Anderson, 2002). Statisticians
have developed several metrics that aid in
variable selection and help to balance model
accuracy with simplicity. The coefficient of
determination (R2), which is the proportion of

variation in the outcome that is explained by
the predictor variables, is useful for judging
the goodness of fit, but R2 almost always
indicates a better fit as the number of predic-
tors increases (Kassambara, 2018). Akaike’s
Information Criterion (AIC) is a metric that
penalizes the inclusion of additional vari-
ables to a model, providing a measure for
balancing accuracy and complexity (Akaike,
1974). BIC is a variant of AIC with a stronger
penalty for including additional variables to
the model (Kassambara, 2018). The capacity
for calculating these metrics and others is
common to most modern statistical software
platforms, facilitating the creation and selec-
tion of quality models through multiple re-
gression.

Correlation (collinearity) of predictor var-
iables can be a potential issue when building
multiple regression models, a situation that
can make it difficult to separate the effects of
independent variables and to detect statistical
significance of predictors (Dormann et al.,
2013; Frost, 2020; Meloun et al., 2002).
Although it is common in studies that include
multiple predictors, the existence of collin-
earity does not influence the predictions, the
accuracy of the predictions, or the goodness-
of-fit statistics of a model, and therefore it is
not a concern when developing and using
models for prediction only (Frost, 2020;
Neter et al., 1996; Shmueli, 2010). Although
often overlooked during criticisms of regres-
sion methods, specific requirements for the
three types of models (explanatory, descrip-
tive, and predictive) are different. Although
collinearity can lead to inflated standard er-
rors that may interfere with inference in
explanatory and descriptive modeling, mod-
erate collinearity is not an important issue for
predictive modeling where inference is not an
objective (Makridakis et al., 1998; Shmueli,
2010; Vaughan and Berry, 2005). The focus
of predictive modeling is the accuracy (pre-
dictive power) of the model when it is applied
to new data, and removal of a useful predictor
variable only because it is correlated with
another predictor can cause an unneces-
sary reduction in predictive accuracy (Frost,
2020; Hyndman and Athanasopoulos, 2018;
Shmueli, 2010). Inclusion of a predictor var-
iable that is highly correlated with another
(near complete collinearity) should be
avoided because it can increase the possibil-
ity of overfitting the model, allowing it to fit
well on the training set but to perform poorly
when used for predictions based on new
samples (Frost, 2020; Martens and Naes,
1989).

During the creation of predictive models,
measures of R2 and F statistics for the original
data (the training set) are used as indicators
for the level of association of variables but
not as a gauge for causation (Frost, 2020;
Shmueli, 2010). Metrics such as AIC aid in
the selection of models for best predictive
accuracy based on the training set (Berk,
2008; Konishi and Kitagawa, 2007; Shmueli,
2010), and utilization of the AIC metric can
prevent overfitting (Dettling, 2015). AICc is
more effective for models based on small

sample sizes (N), and when the N increases
well beyond the number of variables, AICc
converges to AIC, a feature that makes AICc
effective regardless of sample size (Burnham
and Anderson, 2002). Methods of elastic net
regression are effective for selecting vari-
ables and building strong predictive models
even when collinearity is present in a group
of predictors (Boehmke and Greenwell,
2019; Kelly, 2014; Zou and Hastie, 2005).
After model creation, evaluation of model
accuracy on a validation set (a set of data not
used to build the model) is the best indicator
of predictive power (Geisser, 1975; Picard
and Cook, 1984; Stone, 1974).

We used the methods of multiple regres-
sion to analyze and model the effects of
multiple factors on the number of days
remaining until each of four phenological
stages (budbreak, bloom, veraison, and har-
vest maturity) for five cold-climate wine
grape cultivars evaluated in central Iowa.
The objectives of our research were as fol-
lows: 1) to create a series of multifactor
predictive models that use inputs of local,
real-time data to accurately and consistently
estimate the timing for the seasonal arrival of
four key phenological stages of cold-climate
wine grapes; 2) compare and demonstrate the
predictive accuracies of these models by
testing them on the original data set and a
validation dataset; and 3) provide regression
equations from the top-performing mathe-
matical models and describe basic methods
for using the equations in a spreadsheet pro-
gram to predict the annual timing of the four
phenological stages. The resulting mathemat-
ical models provide a predictive mechanism
for real-time estimation of the arrival of
phenological stages based on seasonal thresh-
olds, photoperiod, and cumulative environ-
mental metrics.

Materials and Methods

Nursery-grown plants of ‘Frontenac’, ‘La
Crescent’, ‘Marquette’, ‘Petit Ami’, and ‘St.
Croix’ were received from Double A Vine-
yards, Inc. (Fredonia, NY) as part of the NE-
1020 project titled ‘‘Multi-state Evaluation of
Winegrape Cultivars and Clones.’’ Vines
were planted on 20 May 2008 at the Iowa
State University Horticulture Research Sta-
tion near Gilbert, IA [lat. 42�6#27$ N, long.
93�35#24$ W; USDA hardiness zone 5a
(USDA, 2019)]. Plants were arranged in a
randomized complete block design with
three-vine panels replicated six times (18
vines per cultivar) and bordered by guard
rows and end vines. Soil at the research plot
was a well-drained Clarion loam (fine-loamy,
mixed, superactive, mesic Type Hapludoll),
and no fertilizer was added. Vines of exper-
imental units were trained to a high cordon
(single curtain, bilateral cordon), with the
trellis wire 1.83 m above the ground and vine
spacing of 2.44 · 3.05 m. Pests and diseases
were managed according to established pro-
tocols of integrated pest management
(Hoover et al., 2011). Vines were pruned
and managed according to the protocols
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described by Domoto (2014) and Minnesota
Grape Growers Assn. (2016), including com-
pensatory pruning following winters with
significant bud injury. Dormant pruning was
performed in mid-March for all seasons eval-
uated in the project.

Timing of four phenological stages [bud-
break (at 50% budbreak), bloom (at 50%
bloom), veraison (at 50% veraison), and har-
vest maturity] was recorded as the numerical
DOY when each vine reached the measure-
ment threshold for the specified stage. Vines
were considered to have reached 50% bud-
break when 50% of buds per vine had reached
stage 4 of the Modified Eichhorn-Lorenz
(Modified E-L) phenological scale (Dry and
Coombe, 2004). Vines were considered to
have reached 50% bloom when 50% of
inflorescences per vine had reached Modified
E-L stage 23, and vines were considered to
have reached 50% veraison when 50% of
berries per vine had reached Modified E-L
stage 35 (Eichhorn and Lorenz, 1977). Har-
vest maturity for each cultivar was deter-
mined by assays of soluble solids content
(SSC), pH, and titratable acidity (TA). Be-
ginning at 100% veraison, berries were sam-
pled weekly [morning collections of 100
berries (10 berries per vine) from 10 vines
of each cultivar and selected randomly and
proportionally from the top, middle, and
bottom of clusters]. Sampling frequency
was increased to daily as readings neared
the desired values for harvest. Samples were
juiced with a bench-top juicer (Model J8006;
Omega, Harrisburg, PA) and pressed through
cheesecloth. The SSC of grapes was deter-
mined by using a temperature-compensating
refractometer (ATAGO, Bellevue, WA).
Juice pH was measured with a pH meter
(Orion 2-Star; Thermo Fisher Scientific,
Waltham, MA), and a mini-titrator (Model
HI84532U-01; Hanna Instruments, Woon-
socket, RI) was used to quantify TA. Harvest
maturity for each cultivar was judged based
on SSC, pH, and TA standards set by Dhar-
madhikari and Wilker (2001) for white (21%
to 22% SSC, 3.2–3.4 pH, 7–9 g·L–1 TA) and
red table wines (22% to 24% SSC, 3.3–3.5
pH, 6–8 g·L–1 TA) with adjustment for ‘St.
Croix’ (SSC �18), which did not reach de-
sired SSC before pH exceeded acceptable
values. The primary data for models were
collected during three growth seasons (2011,
2013, and 2014).

A comprehensive software package (JMP
Pro 14; SAS Institute, Cary, NC) was used to
analyze, create, and compare models repre-
senting the effects of multiple factors on the
number of days remaining until fulfillment of
the four phenological stages. The factors
evaluated in models included cultivar,
DOY, DOY of soil thaw or the previous
phenological stage, photoperiod, GDD with
a base temperature of 10 �C (GDD 10), soil
degree days with a base temperature of 5 �C
(SDD 5), and solar accumulation measured in
MJ·m–2 (solar acc.). Full datasets for the
number of days remaining until each pheno-
logical stage were developed from primary
data by incorporating environmental data

from each of the days preceding arrival of
the specified stage. In preliminary research,
we found that one of the key methods for
improvingmodel accuracy was the anchoring
of environmental predictors to a suitable
threshold for each of the stages. Therefore,
GDD 10, SDD 5, and Solar acc. were in-
cluded in models as cumulative amounts
measured from soil thaw (for budbreak) or
from accomplishment of the previous pheno-
logical stage (for bloom, veraison, and har-
vest). Raw data used to calculate DOY of soil
thaw, GDD 10, SDD 5, and Solar acc. were
collected continuously onsite by using a
weather station with air and soil temperature
probes (CS215-L and CS231-L; Campbell
Scientific, Inc., Logan, UT), a solar radiation
sensor (CS301 Pyranometer; Campbell Sci-
entific, Inc.), and a data logger (CR 1000;
Campbell Scientific, Inc.) that logged condi-
tions every 15 min. The air temperature and
solar radiation sensors were set at 2 m above
the ground and the soil temperature sensor
was located at 10.2 cm below the soil surface.
Data for these measurements were accumu-
lated and accessed through the Iowa Envi-
ronmental Mesonet (Iowa State University,
2019). The DOY of soil thaw was defined as
the earliest DOY in which the soil tempera-
ture (10.2 cm below surface) was above 0 �C
and remained above 0 �C for the rest of the
growing season. Photoperiod was calculated
for each date by using data for sunrise and
sunset that were specific for the location of
the vineyard plot. These data were obtained
from Sunrise-sunset.org (2020).

The GDD 10 metric was calculated in two
ways (from hourly temperatures and average
daily temperatures) for comparison of accu-
racy and utility. The GDD 10 based on
average daily temperatures, GDD 10 (Avg),
is the most popular method used for agricul-
ture and is often included in local weather
station datasets that are available to the pub-
lic, such as those of the Iowa Environmental
Mesonet (Iowa State University, 2019). The
GDD 10 (Avg) metric is calculated by sub-
tracting the base temperature of 10 �C from
the average daily air temperature [(daily
maximum + daily minimum) O 2] with a
cap of 30 �C (Iowa State University, 2020).
The GDD 10 metric based on hourly temper-
atures, GDD 10 (Hrly), has been shown to be
more precise than GDD 10 (Avg) for pheno-
logical purposes (Gu, 2016), therefore we
included it in this study for comparison and
use. The GDD 10 (Hrly) metric was calcu-
lated by subtracting the base temperature of
10 �C from the mean hourly air temperature
in �C (with no temperature cap), dividing
each hourly value by 24, then adding the 24
hourly values together to obtain the daily
value.

The generalized regression platform of
JMP Pro 14 was used to calculate metrics for
model and variable selection, generate model
equations, and test the equations on training
and cross-validation sets to validate and
quantify in-sample predictive accuracy
(SAS Institute Inc., 2020). Models based on
one or two factors were built using ordinary

least squares regression, which provides the
best possible coefficient estimates when the
model satisfies the assumptions for linear
regression and collinearity does not exist
(predictors are not correlated) (Berk, 2008).
Models that included more than two predictor
variables were built and evaluated using
elastic net regression techniques, which in-
clude parameters that aid in variable selection
and effectively manage collinearity if it is
present (Boehmke and Greenwell, 2019;
Kelly, 2014; Zou and Hastie, 2005). Two
types of cross validation (AICc and KFold)
were applied and compared for all elastic net
regressions. All models were evaluated for
normal distribution of residuals by using two
JMP diagnostic functions (histogram of re-
siduals and normal quartile plots).

Metrics used for selecting variables and
judging model accuracy based on the training
set were R2, AICc, BIC, the average model
error, and the largest model error. In our
study, error was defined as the absolute dif-
ference between the predicted and actual
number of days remaining until arrival of
the phenological stage. The two error metrics
were calculated on each observational unit by
applying the model equation to the data to
predict the number of days remaining, sub-
tracting the predicted value from the actual
value, then taking the square root of the
squared difference to receive the absolute
value. Using this method for calculating the
average model error (mean difference be-
tween actual and predicted) enabled the cal-
culation of mean separation statistics for this
metric. Means separation analyses were con-
ducted by using Tukey-Kramer honestly sig-
nificant difference model (P # 0.05) in JMP
Pro 14. The ‘‘largest model error’’ was the
largest error of prediction for any single
experimental unit. With four of the five met-
rics (AICc, BIC, average model error, and
largest model error), the lower the metric
value, the better the model (Burnham and
Anderson, 2002; Kassambara, 2018). With
R2, the higher the metric value, the better the
fit of the model. Values for AICc and BIC are
relative to the specific dataset, and therefore
cannot be used to compare models built
on different datasets. For each phenological
stage, models were generated from the full
dataset (all five cultivars) and separately
using data from one cultivar only (Marquette)
to gauge the importance of cultivar specificity
for building models of this type and to con-
firm the accuracy of the multicultivar models.
Models that were determined to be superior
based on the five metrics were selected for
evaluation on the out-of-sample validation
dataset.

Out-of-sample validation performance of
models was evaluated by using data from 144
‘Marquette’ vines from a separate vineyard
measured in 2019. The vineyard used for
validation was located 400 m from the orig-
inal vineyard at the same research station.
Vines in the validation group were planted in
2012, grown on the same training system
(single curtain, bilateral cordon with the
trellis wire at 1.83 m), and managed by using
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the same methods as the original vineyard.
Methods for sampling, data collection, and
data preparation for the validation group
were the same as those for the original train-

ing group. The two metrics used for judging
the performance of models on the validation
dataset were the average model error and
largest model error. Metrics such asR2, AICc,

and BIC are not applicable for out-of-sample
validation of the type used in our methods
because the models were tested on a com-
pletely separate dataset than the one used to

Table 1. Performance of basic (single-factor or cultivar plus one additional factor) and multifactor models for estimating the timing of budbreak (days remaining
until 50% budbreak) for five cold-climate grape cultivars in central Iowa based on 3 years of data (2011, 2013, and 2014). The generalized models (for all five
cultivars) were built based on data (N = 4403) from ‘Frontenac’, ‘La Crescent’, ‘Marquette’, ‘Petit Ami’, and ‘St. Croix’ over a range of 1 to 56 d remaining
until 50% budbreak. A subset of models specific to one widely grown cultivar (Marquette) was generated to confirm the accuracy of the multicultivar model.
Models specific to ‘Marquette’ were built based on data (N = 861) spanning the range from 1 to 53 d remaining until 50% budbreak. Models based on only one
or two predictors (factors) were created by using ordinary least squares regression, andmodels based onmore than two factors were created by using elastic net
regression that included tuning parameters for variable selection and control of potential collinearity.

Factors includedz R2 Avg model error (d)y Largest model error (d)y AICc BIC

All five cultivars
Cultivar, DOY 0.949 1.80 ex 6.98 16,312 16,357
Cultivar, Photoperiod 0.946 1.97 e 6.57 17,378 17,422
Cultivar, GDD 10 (Hrly) 0.787 5.27 b 18.89 29,217 29,262
Cultivar, GDD 10 (Avg) 0.683 6.40 a 27.11 30,974 31,018
Cultivar, SDD 5 0.829 4.72 c 21.61 28,265 28,309
Cultivar, Solar acc.w 0.935 3.23 d 8.02 23,973 24,018
Cultivar, DOY, Soil thaw DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.994 0.93 f 4.47 13,832 13,902
Cultivar, DOY, Soil thaw DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.996 0.75 g 3.81 11,932 12,002
Cultivar, DOY, Soil thaw DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.996 0.70 g 3.98 11,388 11,464

‘Marquette’ only
GDD 10 (Hrly) 0.794 5.09 a 16.93 5,651 5,665
DOY, Soil thaw DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.994 0.90 b 3.5 2,648 2,682
DOY, Soil thaw DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.997 0.65 c 2.73 2,091 2,124
DOY, Soil thaw DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.997 0.54 d 2.49 1,880 1,918

zFactor abbreviations and definitions: AICc = corrected Akaike information criterion; BIC = Bayesian information criterion; DOY = numerical day of the year;
Photoperiod = day length on DOY measured in hours; GDD 10 (Hrly) = growing degree days with a base of 10 �C and calculated from hourly data; GDD 10
(Avg) = growing degree days with a base of 10 �C and calculated from daily average; SDD 5 = soil degree days with a base of 5 �C and based on hourly data
measured at a soil depth of 10.2 cm; Solar acc. = accumulated solar radiation measured in MJ·m–2; Soil thaw DOY = the DOY when the soil temperature at a
depth of 10.2 cm became >0 �C and remained >0 �C for the rest of the growing season. Factors with cumulative quantities [GDD 10 (Hrly), GDD 10 (Avg),
SDD 5, Solar acc.] were measured from Soil thaw.
yModel error (difference between predicted and actual days remaining until budbreak) is reported as the absolute difference (not positive or negative) because
residuals were normally distributed for nearly all models evaluated and therefore had relatively even distribution of positive and negative differences from actual.
xWithin each analysis group, means followed by the same letter are not different according to Tukey-Kramer honestly significant difference test at P# 0.05 (n =
4403 for models based on all five cultivars and n = 861 for models based on ‘Marquette’ only).
wModels with non-normal distribution of residuals.

Table 2. Performance of basic (single-factor or cultivar plus one additional factor) andmultifactormodels for estimating the timing of bloom (days remaining until
50% bloom) for select cold-climate grape cultivars in central Iowa based on 3 years of data (2011, 2013, and 2014). The generalized models (for all five
cultivars) were built based on data (N = 2667) from ‘Frontenac’, ‘La Crescent’, ‘Marquette’, ‘Petit Ami’, and ‘St. Croix’ over a range of 1 to 32 d remaining
until 50% bloom. A subset of models specific to one widely grown cultivar (Marquette) was generated to confirm the accuracy of the multicultivar model.
Models specific to ‘Marquette’ were built based on data (N = 553) spanning the range from 1 to 32 d remaining until 50% bloom.Models based on only one or
two predictors (factors) were created by using ordinary least squares regression, and models based on more than two factors were created by using elastic net
regression that included tuning parameters for variable selection and control of potential collinearity.

Factors includedz R2 Avg model error (d)y Largest model error (d)y AICc BIC

All five cultivars
Cultivar, DOY 0.921 2.19 bcx 5.21 12,317 12,358
Cultivar, Photoperiod 0.900 2.28 b 5.85 12,923 12,964
Cultivar, GDD 10 (Hrly) 0.904 2.24 bc 6.71 12,837 12,878
Cultivar, GDD 10 (Avg) 0.866 2.73 a 7.46 13,720 13,761
Cultivar, SDD 5w 0.920 2.10 c 5.88 12,342 12,383
Cultivar, Solar acc.w 0.954 1.49 d 5.37 10,885 10,926
Cultivar, DOY, Budbreak DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.985 0.85 e 2.80 7,835 7,900
Cultivar, DOY, Budbreak DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.985 0.84 e 2.83 7,822 7,887
Cultivar, DOY, Budbreak DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.985 0.84 e 2.78 7,816 7,886

‘Marquette’ only
GDD 10 (Hrly) 0.907 2.23 a 6.86 2,683 2,696
DOY, Budbreak DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.991 0.68 b 2.44 1,396 1,430
DOY, Budbreak DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.991 0.68 b 2.51 1,410 1,440
DOY, Budbreak DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.991 0.65 b 2.41 1,379 1,414

zFactor abbreviations and definitions: AICc = corrected Akaike information criterion; BIC = Bayesian information criterion; DOY = numerical day of the year;
Photoperiod = daylength on DOY measured in hours; GDD 10 (Hrly) = growing degree days with a base of 10 �C and calculated from hourly data; GDD 10
(Avg) = growing degree days with a base of 10 �C and calculated from daily average; SDD 5 = soil degree days with a base of 5 �C and based on hourly data
measured at a soil depth of 10.2 cm; Solar acc. = accumulated solar radiation measured in MJ·m–2; Budbreak DOY = the DOY when the experimental unit
reached 50% budbreak. Factors with cumulative quantities [GDD 10 (Hrly), GDD 10 (Avg), SDD 5, Solar acc.] were measured from 50% budbreak.
yModel error (difference between predicted and actual days remaining until bloom) is reported as the absolute difference (not positive or negative) because
residuals were normally distributed for nearly all models evaluated and therefore had relatively even distribution of positive and negative differences from actual.
xWithin each analysis group, means followed by the same letter are not different according to Tukey-Kramer honestly significant difference test at P# 0.05 (n =
2667 for models based on all five cultivars and n = 553 for models based on ‘Marquette’ only).
wModels with non-normal distribution of residuals.
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create them. Values for average model error
and largest model error for the validation set
were calculated by the samemethods as those
of the training set.

Results and Discussion

Models with strong predictive accuracy
were created for each of the four phenolog-
ical stages (budbreak, bloom, veraison, and
harvest maturity) by using the methods of
multiple regression, and the five metrics used
for gauging the fit and accuracy of models
provided definitive criteria for selecting the
best models. Initial screening of models and
predictor variables showed that nearly all of
the models evaluated had normally distrib-
uted residuals. The few models with non-
normal distribution of residuals were rejected
and were identified as non-normal in tabular
results. Initial comparisons of the two types
of GDD variables evaluated [GDD 10 (Hrly)
and GDD 10 (Avg)] showed that GDD 10
(Hrly) was more effective as a predictor than
GDD 10 (Avg). Therefore, our results focus
on the use of GDD 10 (Hrly), but include
representative models with GDD 10 (Avg)
for potential use if or when data are unavail-
able for calculating GDD 10 (Hrly). Our
finding that GDD 10 (Hrly) performed better
than GDD 10 (Avg) in prediction models
supports the conclusions of Gu (2016). Of the
two types of elastic net validation evaluated
(AICc and KFold), models constructed by
using AICc validation performed better on
the ‘Marquette’ validation dataset (data not
shown), therefore models built using AICc

validation were chosen over those built using
KFold and are the only elastic net models
included in tables. The ‘‘cultivar’’ variable
was found to be essential for models built on
data from all five cultivars to provide adjust-
ment for innate differences among the culti-
vars (data not shown). Therefore, ‘‘cultivar’’
was included in all models that were built on
data from more than one cultivar.

Model selection and performance based
on the training set

At all four phenological stages, the fit and
accuracy of models was improved by inclu-
sion of multiple factors. The elastic net
regression functions optimized the selection
of predictor variables and provided the best
multifactor model for each stage based on the
training dataset. Along with performance
metrics for basic models built on individual
variables (cultivar and one more variable)
and those of the top multifactor model, we
included results for other select models that
could be useful depending on availability of
data in certain geographical areas. For exam-
ple, inclusion of photoperiod and GDD 10
(Hrly) delivered the best model in nearly all
contexts, but photoperiod data may be diffi-
cult to obtain for some areas and GDD 10
(Avg) data are more commonly available
than GDD 10 (Hrly) data. Therefore, models
built using GDD 10 (Avg) and models built
without the photoperiod variable were in-
cluded in tabular results.

Budbreak. For prediction of budbreak,
models created from data of all five cultivars
showed a range of R2 values from 0.683 for

the poorest performing basic model [built
using cultivar and GDD 10 (Avg)] to 0.996
for the highest performing multifactor model
built by using cultivar and six other predictor
variables [DOY, soil thaw DOY, photope-
riod, GDD 10 (Hrly), SDD 5, solar acc.]
(Table 1). Based on all five metrics of model
performance, all of the multifactor models
outperformed the basic models, showing
higher R2 values and lower values for average
model error, largest model error, AICc, and
BIC (Table 1). The top-performing multifac-
tor model contained all seven predictor var-
iables (cultivar plus six additional variables),
had the lowest average model error (0.70 d),
the second lowest value for largest model
error (3.98 d), and the lowest values for AICc
and BIC. Although the model with all seven
variables was selected as the best model
based on all five metrics, the second best
multifactor model (built without the photo-
period variable) had the same R2 as the top
model, an average model error that was not
significantly different from the top model,
and a value for largest model error that was
less than that of the top model (Table 1). The
lower values for AICc and BIC for the seven-
factor model confirm the benefit of including
the photoperiod variable when these data are
available. Budbreak models based on data
from one cultivar (‘Marquette’ only) had
similar results, with the best model (built
with all six predictor variables) showing an
R2 of 0.997, average model error of 0.54 d,
largest model error of 2.49 d, and the lowest
values for AICc and BIC (Table 1). These
results based on the training set indicate that

Table 3. Performance of basic (single-factor or cultivar plus one additional factor) and multifactor models for estimating the timing of veraison (days remaining
until 50% veraison) for select cold-climate grape cultivars in central Iowa based on 3 years of data (2011, 2013, and 2014). The generalizedmodels (for all five
cultivars) were built based on data (N = 5298) from ‘Frontenac’, ‘La Crescent’, ‘Marquette’, ‘Petit Ami’, and ‘St. Croix’ over a range of 1 to 67 d remaining
until 50% veraison. A subset of models specific to one widely grown cultivar (Marquette) was generated to confirm the accuracy of the multicultivar model.
Models specific to ‘Marquette’ were built based on data (N = 952) spanning the range from 1 to 57 d remaining until 50% veraison. Models based on only one
or two predictors (factors) were created by using ordinary least squares regression, andmodels based onmore than two factors were created by using elastic net
regression that included tuning parameters for variable selection and control of potential collinearity.

Factors includedz R2 Avg model error (d)y Largest model error (d)y AICc BIC

All five cultivars
Cultivar, DOY 0.979 1.94 hx 6.55 23,711 23,757
Cultivar, Photoperiodw 0.811 6.01 a 27.06 36,446 36,492
Cultivar, [Photoperiod]w,v 0.863 4.68 b 27.90 34,724 34,776
Cultivar, GDD 10 (Hrly) 0.960 2.79 c 10.00 26,255 26,301
Cultivar, GDD 10 (Avg) 0.971 2.39 de 8.83 26,537 26,583
Cultivar, SDD 5 0.973 2.32 ef 7.94 26,198 26,244
Cultivar, Solar acc. 0.975 2.23 g 8.18 25,707 25,753
Cultivar, DOY, Bloom DOY, GDD 10 (Avg), Solar acc. 0.985 1.77 i 5.87 23,070 23,136
Cultivar, DOY, Bloom DOY, GDD 10 (Hrly), Solar acc. 0.985 1.77 i 5.64 23,040 23,106

‘Marquette’ only
GDD 10 (Hrly) 0.974 2.10 a 6.34 4,337 4,351
DOY, Bloom DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.994 1.02 b 3.08 3,122 3,156
DOY, Bloom DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.994 1.01 b 2.93 3,117 3,151

zFactor abbreviations and definitions: AICc = corrected Akaike information criterion; BIC = Bayesian information criterion; DOY = numerical day of the year;
Photoperiod = daylength on DOY measured in hours; GDD 10 (Hrly) = growing degree days with a base of 10 �C and calculated from hourly data; GDD 10
(Avg) = growing degree days with a base of 10 �C and calculated from daily average; SDD 5 = soil degree days with a base of 5 �C and based on hourly data
measured at a soil depth of 10.2 cm; Solar acc. = accumulated solar radiation measured in MJ·m–2; Bloom DOY = the DOYwhen the experimental unit reached
50% bloom. Factors with cumulative quantities [GDD 10 (Hrly), GDD 10 (Avg), SDD 5, Solar acc.] were measured from 50% bloom.
yModel error (difference between predicted and actual days remaining until veraison) is reported as the absolute difference (not positive or negative) because
residuals were normally distributed for nearly all models evaluated and therefore had relatively even distribution of positive and negative differences from actual.
xWithin each analysis group, means followed by the same letter are not different according to Tukey-Kramer honestly significant difference test at P# 0.05 (n =
5298 for models based on all five cultivars and n = 952 for models based on ‘Marquette’ only).
wModels with non-normal distribution of residuals.
vFactor designations within [brackets] indicate that the factor was included as nonlinear (second degree polynomial) for that specific model.
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the best multifactor models for the prediction
of budbreak explained more than 99% of the
variance (R2 > 0.99) and predicted the arrival
of budbreak within an average model error of
<1 d and a largest model error of <4 d over a
range from 1 to 56 d before the arrival of
budbreak.

Bloom. For prediction of bloom, models
created from data of all five cultivars showed
a range of R2 values from 0.866 for the
poorest performing basic model [built using
cultivar and GDD 10 (Avg)] to 0.985 for the
top-performing multifactor model built by
using cultivar and six other predictor vari-
ables [DOY, soil thaw DOY, photoperiod,
GDD 10 (Hrly), SDD 5, solar acc.] (Table 2).
The top three multifactor models for bloom
[one with all seven variables, one without
photoperiod, and one with GDD 10 (Avg)
and without photoperiod] showed very little
difference in performance based on the five
metrics. All three had the same R2, their
average model errors were not statistically
different from each other, and their largest
model errors were within only a few hun-
dredths of a day of each other (Table 2). The
multifactor models performed substantially
better than the basic models, with two of the
basic models showing non-normal distribu-
tion of residuals (cultivar with SDD 5 and
cultivar with solar acc.) and the other four
models performing poorly (lower R2 and
higher values for average model error, largest
model error, AICc, and BIC) in comparison
with the multifactor models (Table 2). Mul-
tifactor models for bloom that were based on
data from one cultivar (‘Marquette’ only) had

R2 values of 0.991, average model errors of
#0.68 d, largest model errors of #2.51 d,
AICc of#1410, and BIC of#1440, whereas
the basic model built with only GDD 10
(Hrly) did not perform as well (0.907, 2.23 d,
6.86 d, 2683, and 2696, respectively)
(Table 2). Therefore, the best multifactor
models for the prediction of bloom explained
more than 98% of the variance (R2 > 0.98) in
the training set and predicted the arrival of
bloom within an average model error of
<0.9 d and a largest model error of <3 d over
a range from 1 to 32 d before the arrival of
bloom.

Veraison. Modeling for the prediction of
veraison had one important difference com-
pared with modeling of the other three phe-
nological stages. For the other three
phenological stages, the numeric value for
photoperiod increased (preceding budbreak
and bloom) or decreased (preceding harvest)
with time in a predominately linear fashion.
In the days leading up to veraison the incre-
mental values for photoperiod increase until
summer solstice (DOY 172) then decrease for
the time remaining until veraison (generally
taking place between DOY 207 and 215 in
central Iowa), causing the values for photo-
period to be nonlinear through the time
period leading up to this phenological stage.
Because of this innate nonlinear relationship,
we evaluated both the linear and nonlinear
(polynomial) effects of photoperiod in basic
models (cultivar and photoperiod only) and
found non-normal distribution of residuals
for both models (Table 3). When included as
potential predictors for multifactor models,

photoperiod variables (both linear and poly-
nomial) were eliminated from models by
elastic net regression. Therefore, based on
results from the training set, it was deter-
mined that photoperiod was not useful as a
predictor for estimating the timing of verai-
son.

For models of veraison based on all five
cultivars, predictive power was improved by
inclusion of multiple factors but the amount
of improvement was not as large as it was for
the other phenological stages. For basic
models (cultivar plus one other variable) with
normal residuals, R2 values ranged from
0.960 to 0.979, average model errors ranged
from 1.94 to 2.79 d, largest model errors
ranged from 6.55 to 10.00 d, AICc ranged
from 23,711 to 26,537, and BIC ranged from
23,757 to 26,583 (Table 3). For the two
selected multifactor models, both of which
had photoperiod and SDD 5 eliminated by
elastic net regression, the R2 values were
0.985, average model errors were 1.77 d,
largest model errors were #5.87 d, AICc
values were #23,070, and BIC values were
#23,136. Multifactor models for veraison
that were based on data from one cultivar
(‘Marquette’ only) had R2 values of 0.994,
average model errors of #1.02 d, largest
model errors of #3.08 d, AICc values of
#3122, and BIC values of #3156, whereas
the basic model built with only GDD 10
(Hrly) had values for these metrics of 0.974,
2.10, 6.34, 4337, and 4351, respectively
(Table 3). Therefore, the top multifactor
models for the prediction of veraison
explained over 98% of the variance (R2 >

Table 4. Performance of basic (single-factor or cultivar plus one additional factor) and multifactor models for estimating the timing of harvest maturity (days
remaining until harvest) for select cold-climate grape cultivars in central Iowa based on 3 years of data (2011, 2013, and 2014). The generalizedmodels (for all
five cultivars) were built based on data (N = 3381) from ‘Frontenac’, ‘La Crescent’, ‘Marquette’, ‘Petit Ami’, and ‘St. Croix’ over a range of 1 to 51 d
remaining until harvest. A subset of models specific to one widely grown cultivar (Marquette) was generated to confirm the accuracy of the multicultivar
model. Models specific to ‘Marquette’ were built based on data (N = 760) spanning the range from 1 to 48 d remaining until harvest. Models based on only one
or two predictors (factors) were created by using ordinary least squares regression, andmodels based onmore than two factors were created by using elastic net
regression that included tuning parameters for variable selection and control of potential collinearity.

Factors includedz R2 Avg model error (d)y Largest model error (d)y AICc BIC

All five cultivars
Cultivar, DOYx 0.837 4.35 aw 11.19 20,614 20,657
Cultivar, Photoperiodx 0.835 4.36 a 11.20 20,650 20,693
Cultivar, GDD 10 (Hrly) 0.828 4.29 ab 14.55 20,786 20,829
Cultivar, GDD 10 (Avg) 0.828 4.30 a 14.97 20,791 20,835
Cultivar, SDD 5 0.841 4.12 c 11.78 20,414 20,456
Cultivar, Solar acc. 0.840 4.17 bc 12.09 20,535 20,577
Cultivar, DOY, Veraison DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.860 3.91 d 10.42 20,094 20,161
Cultivar, DOY, Veraison DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.861 3.90 d 10.65 20,064 20,132
Cultivar, DOY, Veraison DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.869 3.80 e 10.13 19,870 19,944

‘Marquette’ only
GDD 10 (Hrly) 0.814 4.54 a 9.72 4,747 4,761
DOY, Veraison DOY, GDD 10 (Avg), SDD 5, Solar acc. 0.978 1.43 b 6.02 3,123 3,155
DOY, Veraison DOY, GDD 10 (Hrly), SDD 5, Solar acc. 0.979 1.33 c 5.92 3,093 3,125
DOY, Veraison DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 0.979 1.32 c 5.91 3,093 3,125

zFactor abbreviations and definitions: AICc = corrected Akaike information criterion; BIC = Bayesian information criterion; DOY = numerical day of the year;
Photoperiod = daylength on DOY measured in hours; GDD 10 (Hrly) = growing degree days with a base of 10 �C and calculated from hourly data; GDD 10
(Avg) = growing degree days with a base of 10 �C and calculated from daily average; SDD 5 = soil degree days with a base of 5 �C and based on hourly data
measured at a soil depth of 10.2 cm; Solar acc. = accumulated solar radiation measured in MJ·m–2; Veraison DOY = the DOY when the experimental unit
reached 50% veraison. Factors with cumulative quantities [GDD 10 (Hrly), GDD 10 (Avg), SDD 5, Solar acc.] were measured from 50% veraison.
yModel error (difference between predicted and actual days remaining until harvest) is reported as the absolute difference (not positive or negative) because
residuals were normally distributed for nearly all models evaluated and therefore had relatively even distribution of positive and negative differences from actual.
xModels with non-normal distribution of residuals.
wWithin each analysis group, means followed by the same letter are not different according to Tukey-Kramer honestly significant difference test at P# 0.05 (n =
3381 for models based on all five cultivars and n = 760 for models based on ‘Marquette’ only).

HORTSCIENCE VOL. 55(12) DECEMBER 2020 1917

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-04 via O
pen Access. This is an open access article distributed under the C

C
 BY-N

C
-N

D
license (https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/). https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/



0.98) in the training set and predicted the
arrival of veraison within an average model
error of <1.80 d and a largest model error of <
5.9 d over a range from 1 to 67 d before the
arrival of veraison.

Harvest. For prediction of harvest matu-
rity, models created from data of all five
cultivars showed a range of R2 values from
0.828 for the poorest performing basic
models [built using cultivar with GDD 10
(Avg) or GDD 10 (Hrly)] to 0.869 for the
highest performing multifactor model built
by using cultivar and six other predictor vari-
ables [DOY, soil thaw DOY, photoperiod,
GDD 10 (Hrly), SDD 5, solar acc.] (Table 4).
The three selected multifactor models per-
formed better than the basic models, showing
higher R2 values and lower values for average
model error, largest model error, AICc, and BIC
than the basic models with normal residuals.
Multifactor models for harvest that were based
on data fromone cultivar (‘Marquette’ only) had
R2 values$0.978, average model errors#1.43
d, largest model errors #6.02 d, AICc values
#3123, and BIC values #3155, whereas the
basic model built with GDD 10 (Hrly) had
values for these metrics of 0.814, 4.54, 9.72,
4747, and 4761, respectively (Table 4).

Compared with the models for harvest
created from data of all five cultivars, models
created from data of ‘Marquette’ performed
much better (Table 4), a result that indicated a
higher level of variability in the timing of
harvest maturity for one or more of the other
cultivars used for building the five-cultivar
models. Examination of the raw data showed
that the standard deviation for harvest DOY
of ‘Marquette’ was 3.63 d and was 1.63, 7.83,
6.14, and 6.24 d for ‘Frontenac’, ‘La Cres-
cent’, ‘Petit Ami’, and ‘St. Croix’, respec-
tively. These results suggest that model
accuracy may be lower when used for prediction
of harvest for three of the cultivars (La Crescent,
Petit Ami, and St. Croix) and that creating a
consistently strongmodel for these three cultivars
may be difficult. Another possible contributor to
the high variance for timing of harvestmay be the
need for growers to harvest within a range of
maturity that works for them. For example,
growers (including those of our research station)
may choose to harvest earlier or later than the
optimum to avoid unfavorable weather condi-
tions or to ensure that they have an adequate
harvest crew in place. Regardless of the exact
cause of the higher variation in our harvest results
for the three cultivars, the multifactor models still

performed substantially better than basic models
for predicting the timing of harvest, and use of
multiple factors strongly improved predictive
power compared with models based on GDD
only (Table 4). Based on the training datasets, the
top multifactor models for the prediction of
harvest explained more than 86% of the variance
for five-cultivar models and more than 97% for
‘Marquette’ models (R2 > 0.86 and > 0.97,
respectively), and predicted the arrival of harvest
maturitywithin an averagemodel error of <4 d or
<1.5 d, respectively, and a largest model error of
<10.7 d or <6.05 d, respectively, over a range
from 1 to 51 d before the arrival of harvest.

Out-of-sample validation of models
Evaluation of model accuracy on an out-

of-sample validation dataset is the best way
to confirm the predictive power of regression
models (Geisser, 1975; Picard and Cook,
1984; Stone, 1974). With our validation data-
set recorded from ‘Marquette’ vines in 2019,
the multifactor models performed much bet-
ter than models based on only GDD 10 (Hrly)
at all four phenological stages (Table 5).
Average model errors for the basic model
created using only GDD 10 (Hrly) were
10.05, 2.54, 4.23, and 4.96 d for budbreak,

Table 5. Predictive accuracy of models based on the validation set (set of data not used to build the model), which consisted of environmental and phenological
data recorded for one widely grownMidwest cultivar (Marquette) in 2019. The vineyard used for validation contained 144 vines and was located 400 m from
the original vineyard at the same research station. Models based on only one predictor were created by using ordinary least squares regression, and models
based on multiple predictors were created by using elastic net regression that included tuning parameters for variable selection and control of potential
collinearity. Models that include ‘‘cultivar’’ as a predictor variable (factor) were created from data of all five cultivars, and the cultivar adjustment coefficient
for Marquette was used for these models. Models listed without ‘‘cultivar’’ as a predictor variable were created from data of Marquette only.

Factors includedz Avg model error (d)y Largest model error (d)y

Budbreak
GDD 10 (Hrly) 10.05 ax 20.99
DOY, Soil thaw DOY, GDD 10 (Avg), SDD 5, Solar acc. 3.79 b 8.51
DOY, Soil thaw DOY, GDD 10 (Hrly), SDD 5, Solar acc. 2.25 c 6.03
DOY, Soil thaw DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 1.96 d 5.97
Cultivar, DOY, Soil thaw DOY, GDD 10 (Hrly), SDD 5, Solar acc. 2.32 c 5.98
Cultivar, DOY, Soil thaw DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 1.92 d 5.94

Bloom
GDD 10 (Hrly) 2.54 a 7.47
DOY, Budbreak DOY, GDD 10 (Avg), SDD 5, Solar acc. 1.39 b 5.75
DOY, Budbreak DOY, GDD 10 (Hrly), SDD 5, Solar acc. 1.34 bc 5.41
DOY, Budbreak DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 1.36 bc 5.64
Cultivar, DOY, Budbreak DOY, GDD 10 (Hrly), SDD 5, Solar acc. 1.31 c 4.94
Cultivar, DOY, Budbreak DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 1.32 c 5.02

Veraison
GDD 10 (Hrly) 4.23 a 9.13
DOY, Bloom DOY, GDD 10 (Avg), SDD 5, Solar acc. 1.07 b 5.89
DOY, Bloom DOY, GDD 10 (Hrly), SDD 5, Solar acc. 1.04 b 5.66
Cultivar, DOY, Bloom DOY, GDD 10 (Hrly), Solar acc. 0.94 c 5.73

Harvest
GDD 10 (Hrly) 4.96 a 10.06
DOY, Veraison DOY, GDD 10 (Avg), SDD 5, Solar acc. 2.09 b 7.10
DOY, Veraison DOY, GDD 10 (Hrly), SDD 5, Solar acc. 1.99 c 7.23
DOY, Veraison DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 2.01 c 6.83
Cultivar, DOY, Veraison DOY, GDD 10 (Hrly), SDD 5, Solar acc. 1.96 c 5.77
Cultivar, DOY, Veraison DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc. 1.67 d 6.27

zFactor abbreviations and definitions: DOY = numerical day of the year; Photoperiod = daylength on DOY measured in hours; GDD 10 (Hrly) = growing degree
days with a base of 10 �C and calculated from hourly data; GDD 10 (Avg) = growing degree days with a base of 10 �C and calculated from daily average; SDD 5 =
soil degree days with a base of 5 �C and based on hourly data measured at a soil depth of 10.2 cm; Solar acc. = accumulated solar radiation measured in MJ·m–2;
Soil thaw DOY, Budbreak DOY, Bloom DOY, and Veraison DOY = the DOY when the experimental unit reached soil thaw at depth of 10.2 cm, 50% budbreak,
50% bloom, and 50% veraison, respectively. Factors with cumulative quantities [GDD 10 (Hrly), GDD 10 (Avg), SDD 5, Solar acc.] for each phenological stage
were measured from the accomplishment of the applicable threshold (soil thaw for budbreak and the previous phenological stage for bloom, veraison, and
harvest).
yModel error (difference between predicted and actual days remaining until the phenological stage) is reported as the absolute difference (not positive or negative)
because residuals were normally distributed for nearly all models evaluated and therefore had relatively even distribution of positive and negative differences
from actual. N = 8226, 4570, 6861, and 6014 for budbreak, bloom, veraison, and harvest, respectively.
xWithin each phenological stage, means followed by the same letter are not different according to Tukey-Kramer honestly significant difference test at P# 0.05
(n = 8226, 4570, 6861, and 6014 for budbreak, bloom, veraison, and harvest, respectively).
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bloom, veraison, and harvest, respectively,
whereas the average model errors for the
selected multifactor models were much lower
(#3.79, #1.39,#1.07, and#2.09 d, respec-
tively). Largest model errors for the basic
model built on only GDD 10 (Hrly) were
20.99, 7.47, 9.13, and 10.06 d for budbreak,
bloom, veraison, and harvest, respectively,
and the largest model errors for the selected
multifactor models were much lower (#8.51,
#5.75, #5.89, and #7.10 d, respectively).
Of the multifactor models selected for vali-
dation, the models created using GDD 10
(Avg) instead of GDD 10 (Hrly) were the
least accurate at all four phenological stages
(Table 5). Although the average model error
for the models using GDD 10 (Avg) was not
significantly different from some of the other
multifactor models at each phenological

stage, it was significantly greater than the
average model error for the best multifactor
model at all of the phenological stages.
Among the selected multifactor models,
those created from data of all five cultivars
performed very well on the ‘Marquette’ val-
idation set, having among the lowest values
for both average model error and largest
model error at all four phenological stages
(Table 5).

Budbreak. For budbreak, the two top-
performing models (the five-cultivar model
with cultivar and all six predictor variables,
and the ‘Marquette’ model with all six pre-
dictor variables) were nearly identical in
effectiveness based on the validation dataset
(Table 5). The values for average model error
for these two models were within a few
hundredths of a day of each other, as were

the values for largest model error. The best of
these two models (the five-cultivar model
with cultivar and all six predictor variables)
predicted budbreak of the validation set
within an average error of 1.92 d and a largest
error of 5.94 d over a range from 1 to 59 d
before the arrival of budbreak (Table 5).
Plotting the actual number of days remaining
until budbreak along with the mean number
of days remaining as predicted by two of the
five-cultivar models [the basic model with
cultivar and GDD 10 (Hrly), and the multi-
factor model with cultivar and all six vari-
ables] provided an effective comparison of
the performance of the models over the range
of 1 to 59 d before budbreak (Fig. 1). Begin-
ning at the top right corner (59 d before
budbreak) and moving toward the bottom left
corner of the plot (1 d before budbreak), it is
evident that the multifactor model outper-
formed the basic model over the entire range
of days preceding budbreak. The basic model
underpredicted the timing of budbreak across
the entire range of 58 d, and its poorest
performance was during the early days of
prediction (40 to 59 d before budbreak) and
again as budbreak was approaching (<24 d
before budbreak), where it commonly under-
predicted the arrival of budbreak by more
than 10 d. The multifactor model slightly
underpredicted the days remaining until bud-
break during the early days of prediction (20
to 59 d before budbreak) then slightly over-
predicted the days remaining as budbreak
was approaching (<15 d before budbreak),
but the prediction mean for the multifactor
model was within 3 d of the actual remaining
number of days across the entire range of
days <56 d preceding budbreak (Fig. 1).

Bloom. In evaluations of models for
bloom, all five of the multifactor models
selected for validation performed well, with
only one multifactor model [the model with
GDD 10 (Avg)] having an average model
error that was significantly greater than that
of the top-performing model (Table 5). Based
on the values for average model error and
largest model error, the five-cultivar model
built without the photoperiod variable
showed a slightly better performance than
the other models, predicting timing of bloom
for the validation set within an average error
of 1.31 d and a largest error of 4.94 d over a
range from 1 to 34 d before the arrival of
bloom. In the plot comparing the actual
number of days remaining until bloom with
the daily mean number of days predicted by
two of the five-cultivar models [the basic
model with cultivar and GDD 10 (Hrly), and
the multifactor model with cultivar and all six
variables], the multifactor model outper-
formed the basic model over the entire range
of days preceding bloom except for three of
the days (21, 22, and 23 d before bloom)
where the basic model was slightly more
accurate (a few hundredths of a day)
(Fig. 2). The models for bloom were gener-
ally more accurate than the models for bud-
break, but the shape of the plots was similar.
The basic model underpredicted the timing of
bloom across the entire range of 33 d, and its

Fig. 1. Actual number of days remaining until budbreak compared with the mean number of days
remaining as predicted by two of the models [the model based on only cultivar and GDD 10 (Hrly), and
the model based on cultivar and all six additional variables] applied to the validation dataset recorded
for ‘Marquette’ vines in 2019. Model equations were used to calculate predictions for the number of
days remaining until budbreak based on values for variables from each day preceding budbreak,
beginning with the day after soil thaw (a range from 1 to 59 d before budbreak). Means and standard
deviations were calculated from values recorded for individual vines (n = 144). The model labeled
‘‘GDD 10 only’’ contained predictor components for cultivar and GDD 10 (Hrly). The model labeled
‘‘All six factors’’ contained predictor components for cultivar and six additional independent variables
[DOY, Soil thawDOY, Photoperiod, GDD 10 (Hrly), SDD 5, and Solar acc.]. DOY = numerical day of
the year; Soil thaw DOY = DOY on which soil thawed for the season; Photoperiod = daylength on
DOY; GDD 10 (Hrly) = growing degree days with a base of 10 �C accumulated since soil thaw and
calculated from hourly data; SDD 5 = soil degree days with a base of 5 �C accumulated since soil thaw;
Solar acc. = solar radiation accumulated since soil thaw.
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poorest performance was during the early
days of prediction (25 to 34 d before bloom)
and again as bloom was approaching (<12 d
before bloom). The multifactor model
slightly underpredicted the days remaining
until bloom during the early days of predic-
tion (>12 d before bloom), then slightly
overpredicted the days remaining as bud-
break was approaching (<6 d before bloom),
but the mean predictions from the multifactor
model were within 1.2 d of the actual days
remaining across the entire range except for
the earliest days of prediction (32, 33, 34 d
before bloom) (Fig. 2).

Veraison. For veraison, the top-performing
model was the five-cultivar model built on
cultivar and four other predictor variables
[DOY, bloom DOY, GDD 10 (Hrly), solar
acc.], which predicted the timing of veraison
for the validation set within an average error of
0.94 d and a largest error of 5.73 d over a range

from 1 to 48 d before the arrival of veraison
(Table 5). The plot comparing the actual
number of days remaining until veraison with
the mean number of days predicted by two of
the five-cultivar models [the basic model with
cultivar and GDD 10 (Hrly), and the multi-
factor model with cultivar and four variables]
showed very accurate predictions provided
by the multifactor model across the entire
range of 47 d (Fig. 3). The multifactor model
slightly underpredicted the actual number of
days remaining across the 47 d, with mean
daily predictions that were all within 1 d
of the actual number remaining except for
those from the earliest two days of predic-
tion (47 and 48 d before veraison). The basic
model built from only cultivar and GDD 10
(Hrly) overpredicted the number of days
remaining until budbreak across the entire
47 d, with mean daily predictions that over-
estimated by >5 d for the time period from

29 to 43 d before veraison, then gradually
improved to overestimates of �2.2 d for the
time period from 1 to 11 d before veraison
(Fig. 3).

Harvest. For prediction of harvest, the
best performing model evaluated on the val-
idation dataset was the five-cultivar model
built with cultivar and all six predictor var-
iables. Even though the in-sample perfor-
mance of this model was hindered by high
variation in the timing of harvest for three of
the five cultivars in the training dataset, the
variation of ‘Marquette’ was relatively low,
and therefore had little impact on the accu-
racy of the model when used on the ‘Mar-
quette’ validation set. The five-cultivar
multifactor model predicted the timing of
harvest for the validation set within an aver-
age error of 1.67 d and a largest error of
6.27 d over a range from 1 to 41 d before the
arrival of harvest (Table 5). In the plot compar-
ing the actual number of days remaining until
harvest with the daily mean number of days
predicted by two of the five-cultivar models [the
basic model with cultivar and GDD 10 (Hrly),
and the multifactor model with cultivar and all
six variables], the multifactor model performed
much more consistently than the basic model
(Fig. 4). The multifactor model slightly under-
estimated the time remaining until harvest (by
<2 d) across the entire range of 40 d. The basic
model performed well for the early days of
prediction (20 to 41 d before harvest), then grew
increasingly inaccurate as harvest approached,
with its poorest performance (overestimation of
�6.6 d) occurring 1 d before harvest (Fig. 4).

Equations for the top-performingmodels
Equations for the top-performing models

at each phenological stage are provided in
Table 6, along with equations for models that
may be useful if data for photoperiod and/or
GDD 10 (Hrly) are unavailable. The predic-
tion value for each model is the sum of three
components: the cultivar adjustment (a value
added or subtracted for the specific cultivar),
variables with coefficients, and a constant.
The cultivar adjustment component is of a
type required for categorical variables, vari-
ables that can take on one of a limited, and
usually fixed, number of possible values
(Mukunthu et al., 2019; Statistics Knowledge
Portal, 2020). The cultivar adjustment
corrects for the intrinsic phenological dif-
ferences among the cultivars in the five-
cultivar models. The cultivar adjustment
was shown to be very effective with the
‘Marquette’ validation set, where the five-
cultivar model with the ‘Marquette’ cultivar
adjustment performed as well or better at all
four phenological stages than the model created
specifically from ‘Marquette’ data (Table 5).
The other two components (variables with co-
efficients and the constant) are typical for re-
gression models. The number of significant
digits included in model equations is deliber-
ately high to maximize the accuracy of predic-
tions (Table 6). The models are not intended to
summarize the effects of the predictors, they are
intended to predict the arrival of the phenolog-
ical stages as accurately as possible based on the

Fig. 2. Actual number of days remaining until bloom compared with themean number of days remaining as
predicted by two of the models [the model based on only cultivar and GDD 10 (Hrly), and the model
based on cultivar and all six additional variables] applied to the validation dataset recorded for
‘Marquette’ vines in 2019. Model equations were used to calculate predictions for the number of days
remaining until bloom based on values for variables from each day preceding bloom, beginning with
the day after budbreak (a range from 1 to 34 d before bloom). Means and standard deviations were
calculated from values recorded for individual vines (n = 144). The model labeled ‘‘GDD 10 only’’
contained predictor components for cultivar and GDD 10 (Hrly). The model labeled ‘‘All six factors’’
contained predictor components for cultivar and six additional independent variables [DOY, Budbreak
DOY, Photoperiod, GDD 10 (Hrly), SDD 5, and Solar acc.]. DOY = numerical day of the year;
Budbreak DOY=DOY on which budbreak occurred for the season; Photoperiod = daylength on DOY;
GDD 10 (Hrly) = growing degree days with a base of 10 �C accumulated since budbreak and calculated
from hourly data; SDD 5 = soil degree days with a base of 5 �C accumulated since budbreak; Solar
acc. = solar radiation accumulated since budbreak.
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available data. The high number of significant
digits is warranted, and they cause no difficulty
when the equations are used with a spreadsheet
program for automated calculation of time
remaining until the phenological stage.

Automated calculation of models using
spreadsheet programs

When used together in succession, the
models for budbreak, bloom, veraison, and
harvest can function as a four-stage, multi-
factor calculator for improved prediction of
phenological timing. Spreadsheet programs
such as Microsoft Excel (Microsoft Corp.,
Redmond,WA) contain tools that can be used
to automate the calculation of predictions
from model equations and provide a pre-
dicted date of arrival for each phenological
stage. A simplified (non-Macro) example of

automated calculation using a spreadsheet
program is provided to demonstrate how
models can be used by growers and techni-
cians who have a moderate level of expertise
with spreadsheet software (Fig. 5). Using the
top-performing five-cultivar model, the fig-
ure illustrates the spreadsheet components
and mathematical functions required for cal-
culation of days remaining until budbreak
and the two-step conversion of this value to
receive the predicted date on which budbreak
will likely take place (Fig. 5). From left to
right, the columns contain the name of the
cultivar followed by the input for each of the
factors as measured during the specified
DOY. When using the model to predict bud-
break for more than one cultivar at the same
time, a separate column for cultivar adjust-
ment is required. If the model is used for only

one cultivar, the value for cultivar adjustment
for that specific cultivar can be included in the
function for the calculation column, and the
extra column for cultivar adjustment can be
removed. The ‘‘calculation’’ column is themost
complex. It contains the entire model equation
in the form of a spreadsheet function that acts
on the values contained in the input columns to
calculate the predicted number of days until
budbreak. The final two columns are used to
convert the number of days until budbreak into
an actual forecasted date for budbreak. The
function in the first of those two columns adds
the number of days remaining until budbreak to
the current value for DOY, then rounds it off to
receive the predicted DOY for budbreak
rounded to the nearest full day. The function
in the last column (far right) converts the
predicted DOY to the calendar date on which
budbreak is predicted to take place (Fig. 5).

Impact and application
Our results demonstrate the effectiveness

and utility of multifactor models for predict-
ing the timing of phenological stages for
cold-climate wine grapes. Comparison of
basic (cultivar plus one predictor variable)
and multifactor models (cultivar plus four to
six predictor variables) based on the same
large dataset reveals the improvement in
predictive power that can be attained when
multiple predictor variables are used and
scaled by the methods of multiple regression.
At all four phenological stages evaluated in
our research (budbreak, bloom, veraison, and
harvest maturity), multifactor models were
selected as the top performers according to
elastic net regression metrics that penalize for
added variables. In agreement with results
from the metrics for variable selection, the
multifactor models had lower mean model
errors than basic models at all four pheno-
logical stages for both in-sample and out-of-
sample evaluations.

Using multiple regression to predict the
‘‘number of days remaining’’ until a pheno-
logical stage arrives, rather than regressing
the effects of variables on the DOY that the
phenological stage arrived, facilitated the
development of a real-time predictive mech-
anism for estimating the arrival of an upcom-
ing phenological stage. This mechanism is a
strong improvement over techniques based
on a variable reaching a certain threshold (for
example, monitoring GDD 10 and expecting
budbreak at a threshold of 125). Compared
with recent models reported by others, our
multifactor models performed very well.
Models created and evaluated by Zapata
et al. (2017) that used GDD with base tem-
peratures that were adjusted for each cultivar
achieved their best predictions for budbreak,
bloom, and veraison with mean errors for the
calibration (training) set of 5.4, 3.0, and 6.6 d,
respectively, across 16 cultivars. Best predic-
tions for budbreak, bloom, and veraison
based on our models had mean errors for
the training set of 0.70, 0.84, and 1.77 d,
respectively, across five cultivars. For the
evaluation (validation) sets, the models cre-
ated by Zapata et al. (2017) achieved their

Fig. 3. Actual number of days remaining until veraison compared with the mean number of days remaining
as predicted by two of the models [the model based on only cultivar and GDD 10 (Hrly), and the model
based on cultivar and four additional variables] applied to the validation dataset recorded for
‘Marquette’ vines in 2019. Model equations were used to calculate predictions for the number of days
remaining until veraison based on values for variables from each day preceding veraison, beginning
with the day after bloom (a range from 1 to 48 d before veraison). Means and standard deviations were
calculated from values recorded for individual vines (n = 144). The model labeled ‘‘GDD 10 only’’
contained predictor components for cultivar and GDD 10 (Hrly). The model labeled ‘‘Four factors’’
contained predictor components for cultivar and four additional independent variables [DOY, Bloom
DOY, GDD 10 (Hrly), and Solar acc.]. DOY = numerical day of the year; Bloom DOY = DOY on
which bloom occurred for the season; GDD 10 (Hrly) = growing degree days with a base of 10 �C
accumulated since bloom and calculated from hourly data; Solar acc. = solar radiation accumulated
since bloom.
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best predictions for budbreak, bloom, and
veraison with mean errors of 5.6, 3.0, and 5.9
d, respectively, and our models achieved best
predictions for budbreak, bloom, and verai-
son with mean errors of 1.92, 1.31, and 0.94
d, respectively, on the validation set. Al-
though the two types of models evaluated
different cultivars in different climates, and
therefore should not be compared formally,
this informal comparison of results demon-
strates the high level of predictive accuracy
achieved by our multifactor models.

As with all types of prediction or fore-
casting of future events, there are uncer-
tainties inherent in attempting to make
predictions of phenological timing by using
the described models. Predictions based on
phenological models or any other models are
estimates that must be interpreted and used
with a degree of caution (Box, 1979;
Hyndman and Athanasopoulos, 2018; Rebba

et al., 2006). Strong models perform well
when values for the predictor variables are
not substantially different from those of the
training set, but can perform poorly when
values deviate widely from those of the
training set (Burnham and Anderson, 2002;
Heinze et al., 2018; Shmueli, 2010). There-
fore, extra caution should be exercised with
models during years when environmental
variables are far from their norms.

For prediction of budbreak specifically, it
is important to acknowledge the impact that
the winter chilling requirement has on dor-
mancy release, and therefore on the timing of
budbreak. It is widely understood that bud-
break is delayed when the chilling require-
ment (measured as hours with temps 0 and
7.2 �C) has not been met, because buds
continue to exhibit some degree of endodor-
mancy. Cumulative chilling hours for our
research vineyards were greater than 1000 for

each of the winters preceding our evalua-
tions. This indicates that ample chilling hours
for overcoming endodormancy were met for
the vines used in preparation and validation
of our models because northern hybrids are
low-chill species that require <1000 h of
chilling (Londo and Johnson, 2014). Along
with other assumptions that must be met for
optimal accuracy of our models (such as
similar and consistent timing of winter prun-
ing), the condition of vines with regard to
endodormancy and chilling hours must be
considered when judging the potential accu-
racy of the model for prediction of budbreak.
If required chilling hours have not been
achieved, model estimates for budbreak
should be used with greater caution.

The models provided in this report should
be sufficient, accurate, and useful for man-
aging the cultivars included in our project
(Frontenac, La Crescent, Marquette, Petit
Ami, and St. Croix) when grown in the
midwestern United States, but they should
not be considered to be universal for all
cultivars or all growing regions. However,
the methods of multiple regression can be
used to create similar models for specific
cultivars and regions to provide the most
accurate predictions possible, and models
could be continuously improved by adding
to the dataset year after year (Neter et al.,
1996; Shmueli, 2010). We recommend at
least 3 years of data for preparation of models
specific to other cultivars and/or regions. The
inputs required for the multiple factors used
in our top-performing models should be
available in most areas. Values for these
variables are either known by definition (cul-
tivar and DOY) or can be compiled (soil thaw
DOY, photoperiod, GDD 10, SDD 5, solar
acc.) from commonly available databases
(such as environmental Mesonet Web sites
or climate data networks) or from private,
dedicated weather stations that can be in-
stalled at vineyards for a moderate cost.

The multifactor models demonstrated in
this report (and/or other potential models
created for specific cultivars or regions) can
be easily adapted for automated calculation
using common spreadsheet software (Fig. 5).
Automated calculation such as this can facil-
itate the practical use of multifactor models
as a tool for crop management. The capacity
to receive a reasonably accurate prediction
for arrival of an upcoming phenological stage
on a daily basis could be especially valu-
able for the planning and preparation for
pruning, pesticide application, shoot and leaf
positioning or removal, cluster thinning, and
harvest. Predictions of budbreak would help
growers gauge the potential for damage from
late spring freeze events and would help
guide decisions about timing of pruning and
preparation of cold-protection methods for
at-risk cultivars. Accurate prediction of phe-
nological stages could improve accuracy
when scheduling work crews at all stages of
vine management and harvest, and insect and
disease management plans could be devel-
oped to optimize pesticide applications by
targeting the stages at which pests are most

Fig. 4. Actual number of days remaining until harvest compared with the mean number of days remaining
as predicted by two of the models [the model based on only cultivar and GDD 10 (Hrly), and the model
based on cultivar and all six additional variables] applied to the validation dataset recorded for
‘Marquette’ vines in 2019. Model equations were used to calculate predictions for the number of days
remaining until harvest based on values for variables from each day preceding harvest, beginning with
the day after veraison (a range from 1 to 41 d before harvest). Means and standard deviations were
calculated from values recorded for individual vines (n = 144). The model labeled ‘‘GDD 10 only’’
contained predictor components for cultivar and GDD 10 (Hrly). The model labeled ‘‘All six factors’’
contained predictor components for cultivar and six additional independent variables [DOY, Veraison
DOY, Photoperiod, GDD 10 (Hrly), SDD 5, Solar acc.]. DOY = numerical day of the year; Veraison
DOY = DOY on which veraison occurred for the season; Photoperiod = daylength on DOY; GDD 10
(Hrly) = growing degree days with a base of 10 �C accumulated since veraison and calculated from
hourly data; SDD 5 = soil degree days with a base of 5 �C accumulated since veraison; Solar acc. =
solar radiation accumulated since veraison.
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active based on phenology and environmen-
tal data. In these and other ways, prediction
models could be used as part of a viticulture
management system to help improve effi-
ciency and sustainability, reduce waste, and
increase profitability.
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