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Abstract. ‘Honeycrisp’ (Malus X domestica) apples were harvested from a total of 17 mid-
Atlantic orchards during 2018 and 2019 to verify a previously published bitter pit
prediction model. As in the previous study, bitter pit incidence was associated with low
calcium (Ca) levels and high ratios of nitrogen (N), potassium (K), and/or magnesium
(Mg) to Ca in the fruit peel and excessive terminal shoot growth. The best two-variable
model for predicting bitter pit developed with the 2018—19 data set contained boron (B)
and the ratio of Mg to Ca (R* = 0.83), which is different from previous models developed
with data from three individual years (2015-17). When used to predict the bitter pit
incidence of the 2018-19 data, our previous best model containing the average shoot
length (SL) and the ratio of N to Ca underestimated the incidence of bitter pit. The model
is probably biased because one or more important variables related to bitter pit have not
yet been identified. However, the model is accurate enough to identify orchards with a
low incidence of bitter pit.

‘Honeycrisp’ is a popular apple cultivar,
but it is susceptible to several postharvest
disorders, including bitter pit (Al Shoffe
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et al.,, 2016; DeEll et al., 2016; Watkins
et al., 2004). Several studies showed that
bitter pit development is likely due to an
imbalance of K, Mg, P, Ca, and N in the fruit
(Cheng, 2016; Ferguson, 2001; Ferguson and
Watkins, 1989). The severity of bitter pit
varies considerably among years, orchards,
and trees within orchards. During some years,
100% of the fruit on a tree may develop bitter
pit after storage; often, more than 30% of the
fruit develop bitter pit (Baugher et al., 2017).
To avoid storing, packing, and shipping fruit
that is likely to develop bitter pit, apple
producers must be able to identify blocks of
trees with high potential for bitter pit so they

can sell the fruit immediately. We recently
reported a bitter pit prediction model for
‘Honeycrisp’ based on the average shoot
length (SL) and ratio of N to Ca in the peel
of apples sampled 3 weeks before commer-
cial harvest from individual trees with vary-
ing crop densities at six commercial orchards
in Adams County, PA, over 3 years (Baugher
et al., 2017). The model was validated using
three different statistical methods that pro-
vided supporting evidence that the selected
model included the most important variables
that were evaluated. However, the model
tended to underpredict bitter pit for trees with
higher levels of observed bitter pit. The
objective of this study was to obtain ‘Honey-
crisp’ apples from blocks of trees, rather than
individual trees, in a larger geographical
region to verify the model.

Materials and Methods

During 2018 and 2019, bitter pit was
assessed at eight and nine ‘Honeycrisp’ or-
chards, respectively (Table 1). For each or-
chard, 20 mature trees with crop loads that
were representative of the block were selected,;
~3 weeks before the anticipated harvest, three
fruit were randomly sampled at 1.7 m above-
ground from each tree for fruit peel tissue
analysis, as previously described (Baugher
et al., 2017). No indices of fruit maturity were
measured. Although crop density was not
recorded, the commercial growers indicated
that the trees had moderate crop loads follow-
ing chemical and hand thinning. Each fruit
was washed and, using a potato peeler, a 1-cm-
wide peel sample was removed from around
the circumference at the calyx end of the fruit.
Flesh tissue adhering to the peel was removed
with a spoon. Fruit peel samples were dried for
4 h at 70 °F and sent to the Penn State
Agricultural Analytical Services Laboratory,
where they were ground and analyzed for N, P,
K, Ca, Mg, Mn, Fe, Cu, S, B, Al, Na, and Zn
(procedures described at http://agsci.psu.edu/
aasl/plant-analysis/plant-methods). Following
terminal bud set, the average SL was estimated
from five representative current season shoots
per tree.

Five fruit per tree were collected at opti-
mum maturity for long-term storage based on
a ground color of pale yellow. The samples
were stored in commercial cold rooms at
~3.3 °C. Fruit were assessed for the inci-
dence of bitter pit after 4 months in storage
plus 7 d at 20 °C.

Statistical analysis

Identifying the best subset of variables to
include in multiple regression models is
complicated and somewhat arbitrary. There-
fore, the general five-step approach used in
this study is outlined here and described in
more detail for each data set.

1. Evaluate relationships among 20 po-
tential regressor variables plus bitter pit
incidence with scatter plots and corre-
lation matrix
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Table 1. Description of orchards from which ‘Honeycrisp’ apples were sampled in 2018 and 2019, along with concentrations of phosphorus (P), potassium (K),
and boron (B) and the nitrogen (N)-to-calcium (Ca) ratio in peel tissue, average shoot length (SL), and observed bitter pit and incidence of bitter pit predicted
using the previously published model (Baugher et al., 2017).

Bitter pit (%)

Yr Orchard location Rootstock N/Ca P (%) K (%) B (ppm) SL (cm) Obs. Pred.
2018 Boyertown, PA B.9 4.40 0.07 0.76 22 17.8 5 -7.8
Pittstown, NJ M.9 Pajam2 10.00 0.09 0.65 23 9.0 41 12.9
Piney River, VA M.9 NAKBT337 6.83 0.09 0.85 25 54.6 6 33.8
Winchester, VA B.9 5.25 0.05 0.83 14 20.3 8 -2.6
Biglerville, PA M.26 10.40 0.08 0.65 35 44.8 43 37.5
Rock Springs, PA M.26 8.20 0.12 1.13 47 48.0 57 32.6
Bedford, PA M.26 6.71 0.08 1.10 33 36.2 22 16.8
Bedford, PA M.9 NAKBT337 6.00 0.06 0.99 25 31.0 6 9.7
2019 Bedford, PA M.26 6.20 0.08 0.82 33 18.5 24 -0.9
Bedford, PA M.7 6.40 0.11 0.88 40 33.8 36 13.6
Bedford, PA M.9 NAKBT337 5.80 0.08 1.11 31 14.7 0 -5.7
Rock Springs, PA M.26 7.00 0.09 0.94 32 47.5 30 28.0
Winchester, VA B.9 5.25 0.08 0.77 21 37.4 20 12.8
Milford, NJ M.9 Nic29 5.00 0.09 0.89 29 30.4 14 5.6
Annandale, NJ M.7 11.50 0.09 1.00 22 43.7 68 40.3
Pittstown, NJ M.9 Pajam2 7.33 0.09 0.95 25 36.8 38 19.5
Piney River, VA M.26 8.75 0.12 0.77 30 36.1 26 239

Table 2. The best one-, two-, three-, and four-variable multiple regression models for predicting the percentage of ‘Honeycrisp’ apples that will develop bitter pit
after storage based on shoot length (SL; cm) and peel nutritional concentrations (%) sampled 3 weeks before harvest. Models were developed with the trial 1
data set (2015, 2016, and 2017; Baugher et al., 2017), with the trial 2 data set (2018 plus 2019), and with the combined data sets (2015-19). All R? values were
significant (P < 0.0001). Except for phosphorus (P) and boron (B) in the data set for 2018 plus 2019, all regression coefficients were significant (P < 0.05).

Intercept N/Ca SL P B R? Adj R?
Trial 1 data set for 2015, 2016, and 2017 (n=161)
Parameter estimates -30.97 4.63 — — — 0.583 —
st of the estimates 3.81 4.63 — — —
Parameter estimates —42.54 3.90 0.81 — — 0.681 0.665
st of the estimates 3.73 0.29 0.12 — —
Parameter estimates —54.91 3.77 0.75 186.2 — 0.692 0.676
sk of the estimates 6.31 0.29 0.12 77.1 —
Parameter estimates -46.82 4.17 0.58 363.3 -0.78 0.712 0.634
sk of the estimates 6.58 0.31 0.12 91.9 0.24
Trial 2 data set for 2018 and 2019 (n = 17)*
Parameter estimates -28.64 7.69 — — — 0.653 —
sk of the estimates 10.68 1.45 — — —
Parameter estimates -32.28 7.14 0.22™ — — 0.670 0.623
st of the estimates 10.18 1.73 0.34 — —
Parameter estimates —45.31 6.53 0.09™ 251.3™ — 0.712 0.646
st of the estimates 13.53 1.74 0.36 169.8 —
Parameter estimates —47.07 6.72 0.08™ 150.7 0.34™ 0.762 0.682
sk of the estimates 15.25 1.87 0.28 239.8 0.51
Combined data set for 2015-19 (n = 176)

Parameter estimates -25.00 4.29 — — — 0.512 —
sk of the estimates 3.74 0.32 — — — — —
Parameter estimates -39.99 3.65 0.87 — — 0.643 0.639
sk of the estimates 3.72 0.28 0.11 — —
Parameter estimates —53.28 3.52 0.79 203.2 — 0.658 0.652
st of the estimates 6.66 0.27 0.11 74.5 —
Parameter estimates —47.41 3.77 0.68 342.6 -0.60 0.671 0.664
st of the estimates 6.44 0.28 0.11 91.2 0.23

“Regression coefficients with ™ are not significant at the 5% level.

N = nitrogen; Ca = calcium.

2. Identify important regressor variables
with four preliminary variable selection

methods (forward, backward, stepwise,

and Max. R-square regression)
3. Identify candidate models with linear
predictor variables

a. Estimate the maximum number of
variables to include in the model
by plotting Mallow’s conceptual
predictive criterion (C,) statistic
against the number of predictor
variables

HorTSciENCE VoL. 55(12) DEcEMBER 2020

b. Use the “all possible regressions”
approach to identify candidate
models with subsets of predictor
variables

c. Determine if quadratic or interac-
tion terms improve the model

4. Identify and remove collinear variables
and highly influential observations
5. Test assumptions of normality and
variance homogeneity
Developing a predictive model with data
from 2018 plus 2019. There were 20 potential
regressor variables: SL, N, P, K, Ca, Mg, S,

Mn, Fe, B, Cu, Al, Zn, Na, N/Ca, K/Ca, Mg/
Ca, Mg + K)/Ca, (Mg + K + N)/Ca {[(Mg +
K)/Ca + (N/Ca)] — 38 (referred to as the
accumulated ratio)}. Relationships among
the regressor variables were evaluated graph-
ically as scatter plots with SAS PROC
GPLOT, PROC SGSCATTER, and PROC
G3D. PROC CORR (Freund and Littell,
2000) was used to generate a correlation
matrix to evaluate the linear relationships
between the response variable (percentage of
fruit with bitter pit symptoms after storage) as
well as the 20 potential regressor variables
The accumulated ratio was included as a
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variable because it is used by Washington
packers to segregate fruit by storage potential
(developed by Harold Ostenson; Hanson,
2012). Based on the correlation and scatter
plot matrices, six variables (S, Mn, Fe, Cu,
Al, and Na) were discarded as nonimportant
explanatory variables. The accumulated ratio
was also discarded because it correlated per-
fectly (» = 1.0) with the less complicated
variable (N + K + Mg)/Ca.

Candidate multiple regression models to
predict bitter pit were identified using four
options with SAS PROC REG (FORWARD
selection, BACKWARD elimination, STEP-
WISE selection, and MAXR maximum
R-square improvement) by including the re-
gressor variables N, P, K, Ca, Mg, B, and SL.
The five ratios of cations [N/Ca, K/Ca, Mg/
Ca, (K+Mg)/Ca and (N + K + Mg)/Ca] were
not included because they were highly cor-
related (r > 0.87) (Table 2). Although these
model selection methods are easily per-
formed and usually identify good models
based on the selection criteria, they rarely
identify the best model (Myers, 1990) be-
cause they ignore potential collinearity prob-
lems and fail to include variables involved in
interactions. A plot of Mallow’s C;, indicated
that a model with five or fewer regressor
variables would prevent overfitting the
model. The model with all six individual
elements plus SL had an R*> = 0.78. The
RSQUARE option was included in the model
statement to generate all possible one-
variable, two-variable, three-variable, and
so on up to 12-variable models that included
the six individual elements plus SL and five
cation ratios. Criteria considered for model
selection included the coefficient of determi-
nation (R?), adjusted R?, Mallow’s C,, mean
square error, Akaike information criterion,
Bayesian information criterion, and predicted
sum of squares. A manual backward selection
technique was used as a final method of
developing a model. A multiple regression
model was fit with all 12 predictor variables
(six individual elements, SL, and five ratios).
The variable with the largest P value was
deleted and the reduced model was fit. This
process continued until only significant
variables (P < 0.05) remained. Then, the
INFLUENCE option in PROC REG was
included in the model statement to generate
variance inflation factors, tolerance indices,
eigenvalues, condition indices, and propor-
tion of variance values to identify and delete
variables that were collinear.

Developing a model with the pooled data
set for 5 years. Data used to develop the
previously published model using data from
2015 to 2017 (Baugher et al., 2017) plus data
from 2018 and 2019 were pooled (n = 178),
and the same process that was previously
descried was used to develop a new model.
After the final model was selected, two
influential observations, based on DFFITS
and Cook’s D statistic, were deleted from the
data set and the final model was developed
using the data set with 176 observations.

Using data from nine individual trees at
six orchards for 3 years, we previously iden-
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tified the best two-, three- and four-variable
models for predicting bitter pit (Baugher
et al., 2017). This original 3-year data set
(n = 161) is referred to here as trial 1. The
data collected in 2018 and 2019 are referred
to here as trial 2. One method of cross-
validation to graphically evaluate the predic-
tive ability of a model is determining how
well the bitter pit models from trial 1 estimate
bitter pit for trial 2. The OUTEST option in
PROC REG was used to produce the param-
eter estimates for the best one-, two-, and
three-variable models using data from trial 1,
and PROC SCORE was used to calculate the
estimated responses for trial 2 data.

Results and Discussion

Verification of published models. The re-
gression models for trial 2 containing one,
two, three, or four variables had similar R?
values compared with the corresponding
models developed with trial 1 data, and the
regression coefficients were only slightly
different (Table 2). The st of the estimates
were larger for models developed with trial 2
data, likely because there were only ~10% as
many observations for trial 2. Values of bitter
pit incidence predicted with the two-, three-,
and four-variable models were linearly re-
lated to observed values (Fig. 1). However,
all three models were biased and underpre-
dicted bitter pit, especially at the higher
levels of observed bitter pit. A perfect rela-
tionship between predicted and observed
bitter pit would have a slope of 1.0 and an
R?=1.0. Slopes and R? values were 0.55 and
0.52, 0.63 and 0.57, and 0.59 and 0.54,
respectively, for the two-, three-, and four-
variable models. These results support our
results from trial 1 using PROC SCORE, in
which bitter pit values were underpredicted
for trees with high levels of observed bitter
pit (Baugher et al., 2017). Predictions were
slightly better for the three- and four-variable
models, but they still underpredicted the
bitter pit incidence for 15 of the 17 orchards
in trial 2. At low levels of bitter pit, the
predicted values were only ~5% too low;
however, when observed bitter pit was
~70%, the predicted values were only 37%
ofthe observed values. Al Shoffe et al. (2019)
recently published a bitter pit prediction
model based on a “passive method” reported
by England and Larson (1973). The method
involved sampling fruit 3 weeks before the
anticipated harvest and holding the fruit at
20 °C to allow bitter pit to develop. The
model based on the passive method also
underpredicted bitter pit for ‘Honeycrisp’
fruit.

Developing a model with trial 2 data
(2018 and 2019). For apples collected in
2018 and 2019, bitter pit incidence was pos-
itively and linearly related to P and all six
cation ratios, and it was negatively related to
Ca (Table 3). Ca and P were the only indi-
vidual elements significantly correlated with
bitter pit (» > 0.48); however, bitter pit was
better correlated with all cation ratios (r >
0.77). The six cation ratios were also highly
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Fig. 1. Plots of the predicted incidence and ob-
served incidence of bitter pit for trial 2 data
collected in 2018 and 2019, using the best two-,
three-, and four-variable models developed
with data from 2015 and 2016 plus 2017 (trial
1). The 45-degree line is the line of equality.

correlated with each other (Table 3). Scatter
plots of raw data and residuals provided no
evidence that the relationships between bitter
pit and the predictor variables were curvilin-
ear. SL was not correlated with any of the
other 12 variables. N was positively corre-
lated with Mg and Ca. K was correlated with
Mg, P, and B. Mg was correlated with N/Ca,
and Ca was correlated with all the ratios
except N/Ca. Three of the ratios, (K + Mg)/
Ca, (N + K + Mg)/Ca, and the accumulated
ratio, were nearly perfectly correlated (r =
0.99). The best model with all significant (P <
0.05) variables and no collinear terms was BP
(%) = —45.19 + 1.07*B + 18.89*(Mg/Ca),
with R? = 0.84 and adjusted R? = 0.81. This
model contains different regressor terms than
the best models developed with data from
2015, 2016, or 2017 data sets and from the
pooled (2015-17) data set. The results sup-
port our previous results (Baugher et al.,
2017) indicating that the best predictive
models for bitter pit incidence contained
different predictor variables each year. When
data from trial 1 were fit with the best model
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Table 3. Matrix of correlation coefficients to evaluate the linear relationships between bitter pit (%) after storage and various concentrations (%) of ‘Honeycrisp’
fruit peel elements measured 3 weeks before harvest in 2018 and 2019 (» values > 0.48 and 0.61 are significant at the 5% and 1% levels, respectively; n=17).

Variable Bitter pit SL N K Mg Ca P B Mg/Ca K/Ca N/Ca (K+Mg)/Ca (N+K-+Mg)Ca
SL 0.45 — — — — — — — — — — — —
N 0.09 0.30 — — — — — — — — — — —
K 0.47 0.32 046  — — — — — — — — — —
Mg 0.41 0.39 0.77 053 — — — — — — — — —
Ca —-0.54 —0.04 0.66 0.13 0.18 — — — — — — — —
P 0.55 0.45 0.12 061 036 -026 — — — — — — —
B 0.37 0.32 046 078 037 025 0.67 — — — — — —
Mg/Ca 0.80 031 -0.06 020 044 -071 036 —0.80 — — — — —
K/Ca 0.77 026 -034 026 0.05 -0.79 036 -0.04 0.87 — — — —
N/Ca 0.81 0.41 037 038 0.66 -041 041 0.17 0.88 0.68 — — —
(K +Mg)/Ca 0.78 027 -032 026 0.09 -0.79 037 -0.04 0.89 0.99 0.70 — —
(N +K + Mg)/Ca 0.82 031 -020 029 021 -075 039 -0.01 0.93 0.98 0.80 0.99 0.99
Accum. ratio 0.82 031 020 029 021 075 039 -0.01 0.99 0.98 0.80 0.99 1.00

B = boron; Ca = calcium; K = potassium; Mg = magnesium; N = nitrogen; P = phosphorus; SL = shoot length.
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Fig. 2. Three-dimensional bar chart showing the incidence of bitter pit (%) (bp) as shoot length (shoot) and
that the nitrogen (N)-to-calcium (Ca) ratio (n_ca) varied for the 5-year pooled data set.

from trial 2, R* = 0.49 and bitter pit was
underpredicted at low levels of observed
bitter pit and overpredicted at high levels of
observed bitter pit (data not shown).

Revising the model with 5 years of data. A
three-dimensional plot for the 5-year data set
showed that bitter pit incidence was low when
shoots were short and when the N/Ca ratio was
low, but there was quite a bit of variation in the
data (Fig. 2). When the SL x (N/Ca) interac-
tion term was included in the model, it was not
significant (P = 0.21) and it did not improve
the predictive ability of the model.

Data from the two trials were combined
and all possible regression models were
requested with the RSQUARE option in
PROC REG (Table 4). The same variables
that were selected using data from trial 1
(Baugher et al., 2017) were again selected:
the best one-variable model contained N/Ca,
the best two-variable model contained N/Ca
and SL, the best three-variable model con-
tained N/Ca, SL, and P, and the best four-
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variable model contained N/Ca, SL, P, and B
(Fig. 1). Residual plots for trial 1 and the
pooled data set looked similar and no patterns
were noticeable (data not shown). The reason
why the same predictor variables were se-
lected for both data sets is likely that 161 of
the 178 observations (90%) in the combined
data set were from trial 1.

In an attempt to identify a model that was
less biased, various models were developed
with trial 1 data and used to predict bitter pit
incidence for trial 2 data. Models that were
evaluated included models with one variable
[SL, K, Ca, Mg, N/Ca, (N + K + Mg)/Ca, and
accumulated ratio], and models with two
variables {[(N+K+Mg)/Ca + SL] and [accu-
mulated ratio + SL]}. In all cases, the models
developed from trial 1 data underpredicted
the bitter pit incidence at higher levels of
observed bitter pit. Nitrogen is expensive to
analyze; therefore, a model that does not
include nitrogen would be desirable. The best
model without nitrogen [SL + (K + Mg)/Ca]

explained 55% of the variation in bitter pit
incidence compared with 64% for the best
model (SL + N/Ca). The model without
nitrogen not only explained less variation
but also was more biased and overpredicted
all observations, with bitter pit incidence
greater than 45%.

The fact that our best models and those
previously published explain less than 70%
of the variation in bitter pit incidence sug-
gests that one or more important variables are
missing from the models. Bitter pit is a
complex disorder, and some important con-
tributing factors may not have been identified
yet. There may be several reasons why our
best model explained only 67% of the vari-
ation in bitter pit incidence. It is possible that
a single peel sample at 3 weeks before harvest
does not fully represent the nutritional status
of the fruit, and additional sampling times
may be beneficial. Preliminary work showed
that bitter pit could be predicted reasonably
well from peel samples at 3 weeks before
harvest. Additional sampling dates may im-
prove the prediction, but it would also in-
crease the expense. Taking samples later than
3 weeks before harvest may not allow enough
time to obtain results for making marketing
decisions.

In this study, fruit maturity was not
assessed; however, for most cultivars, bitter
pit is most severe in early picked fruit
(Perring, 1986). We found this to be the case
for ‘Honeycrisp’ in a preliminary experi-
ment. Al Shoffe et al. (2016, 2020) recently
discussed the development of bitter pit and
soft scald during storage for conditioned and
unconditioned fruit in relation to mineral
contents and harvest indices. For uncondi-
tioned fruit sampled at the start of commer-
cial harvest, bitter pit incidence was least
severe for fruit with high internal ethylene
concentration, low starch values, and high
Ca concentrations in peel tissue. Bitter pit
was most severe for fruit with green skin
color (/4p) and high peel tissue P, K, Mg,
and cation ratios. ‘Honeycrisp’ is usually
harvested based on ground color. However,
ground color may not always be a good
indicator of fruit maturity. Giacomo et al.
(2017) recently evaluated the delta absor-
bance meter as a nondestructive method of
predicting the ripening stage of ‘Delicious’
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Table 4. The best four multiple regression models for one to four regressor variables along with fit statistics using data from single trees at six orchards for 3 years
(2015-17; n = 161) plus data from blocks of 20 trees in 2018 and 2019 (n = 17). The pooled data set (trials 1 and 2) had 175 observations.

No. of variables Model variables R Adj. R? Cp AIC MSE
1 N/Ca 0.500 0.497 83.3 1056.9 374.7
Mg/Ca 0.489 0.486 89.0 1060.8 383.1
(N + K + Mg)/Ca 0.487 0.484 89.9 1061.4 384.3
(K +Mg)/Ca 0.438 0.435 115.4 1077.8 421.5
2 SL + N/Ca 0.642 0.638 12.2 999.4 269.9
SL + (N + K + Mg)/Ca 0.597 0.592 354 1020.5 303.8
SL + (K + Mg)/Ca 0.552 0.547 58.5 1039.3 337.7
SL + Mg/Ca 0.549 0.544 60.1 1040.6 340.1
3 SL + N/Ca + P 0.607 0.600 9.3 9979.9 264.3
SL + N/Ca +K 0.597 0.590 13.6 984.1 270.6
SL + N/Ca+ B 0.596 0.589 13.8 984.4 271.2
SL + (K + MG)/Ca + (N + K + Mg)/Ca 0.596 0.589 13.9 984.4 2712
4 SL+N/Ca+P+B 0.622 0.613 4.5 975.1 255.6
SL +N/Ca+P+Ca 0.609 0.599 10.3 980.9 264.3
SL +N/Ca+ P + Mg 0.608 0.598 10.8 981.5 265.1
SL + (K + Mg)/Ca + (N + K + Mg/Ca) + P 0.607 0.598 11.0 981.6 265.4

AIC = Akaike information criterion; B = boron; Ca = calcium; C,, = conceptual predictive criterion; K = potassium; Mg = magnesium; MSE = mean square error;

N = nitrogen; P = phosphorus; SL = shoot length.

and ‘Golden Delicious’ apples. They har-
vested fruit at commercial maturity and
recorded changes in commonly used indices
of maturity (soluble solids concentration,
flesh firmness, internal ethylene concentra-
tions, and titratable acids) over a 4-week
postharvest period at 20 °C. The index of
absorbance difference (/,p) that measures
ground color was significantly and linearly
associated with all four indices, but R? values
ranged only from 0.22 to 0.72. Based on the
ratio performance deviation obtained by
cross-validation, I, values can be used to
discriminate low values from high values of
maturity indices, but course quantitative pre-
dictions were not possible. Prance et al.
(2011) showed that bitter pit severity de-
clined as ‘Honeycrisp’ apples became more
mature, and few incidents bitter pit devel-
oped when fruit were harvested with a starch
index of ~5.4 and internal ethylene concen-
tration of 2.9 uL-L". In a preliminary exper-
iment with a sample of 20 ‘Honeycrisp’
apples from each of three orchards, we found
that 7, did not correlate well with the starch
index because the relationship between I,p
and starch varied with the orchard. Even
within an orchard, individual fruits with 7,p
values of 0.66 could have starch index values
of 1 to 7 (Marini, unpublished data). Ground
color and starch index are unreliable as
standalone indices of maturity, but they are
the maturity indices most used by mid-
Atlantic growers of ‘Honeycrisp’. Currently,
there is no reliable nondestructive measure of
‘Honeycrisp’ maturity, but inclusion of a
such a variable in the model would likely
enhance bitter pit prediction.

Fruit harvested from different canopy
positions may vary in susceptibility to bitter
pit. Calcium moves in the transpiration
stream of trees; therefore, fruit developing
in shade or parts of the canopy with low
transpiration rates may have low calcium
levels and a high incidence of bitter pit.
Unexpectedly, concentrations of Ca and K
in ‘Cox’s Orange Pippin’ fruit in New Zea-
land were lower in fruit harvested from the
upper parts of the tree than in fruit from the
lower canopy, and the incidence of bitter pit
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increased from 12% in the lower parts to 24%
in the upper parts of the canopy (Ferguson
and Triggs, 1990). However, in a study using
high-density orchards in Washington, Kalc-
sits et al. (2019) reported that ‘Honeycrisp’
apples from the upper canopy had higher
concentrations of Ca and lower internal eth-
ylene than fruit from the lower canopy. The K
concentrations were similar regardless of
canopy position. Only 14% of the fruit in
the upper part of the canopy developed bitter
pit compared with 31% in the lower canopy.
Another factor that may influence bitter pit
is crop load; Ferguson and Watkins (1992)
found that fruit harvested from light-cropped
trees had lower Ca and higher K concentra-
tions as well as a higher incidence of bitter
pit. They suggested that the ability to predict
bitter pit from fruit Ca concentrations may be
influenced by crop load. Fruit exposed to
wind may have less bitter pit because high Ca
concentrations of apple fruit and low levels
of bitter pit were associated with increased
wind speed (Lewis et al., 1977). The effect of
canopy position may vary with environmen-
tal factors or orchard system because prelim-
inary data from Pennsylvania suggest that
the influence of canopy position on bitter pit
severity may vary with orchard and year
(unpublished data). Rootstocks influence
vegetative vigor and nutrient uptake (Fazio
et al., 2015). In the current study, trees on the
more vigorous rootstocks (M.26 and M.7)
had the highest incidence of bitter pit
(Table 1). A group of researchers evaluating
rootstocks in an NC-140 ‘Honeycrisp’ trial
are evaluating the influence of rootstock on
fruit mineral concentrations and bitter pit, but
unpublished preliminary results were incon-
sistent across locations and years within lo-
cations. As new models are developed to
predict bitter pit, some of these variables
should be considered.

Critical concentrations of various ele-
ments in apple fruit flesh have been related
to bitter pit for several apple cultivars.
Models for predicting bitter pit have been
published for several apple cultivars based on
Ca alone, or combinations of Ca plus Mg, B,
K, and/or N, and R? values were typically less

than 0.70 (Al Shoffe et al., 2019; Perring,
1986; Torres et al., 2017). The model based
on the passive method (R*> = 0.68) also
underpredicted bitter pit (Al Shoffe et al.,
2019). To our knowledge, the current study is
the first attempt to verify a bitter pit predic-
tion model. Our best models explained less
than 70% of the variation in bitter pit inci-
dence and were biased, suggesting that
models based on elemental levels in peel
tissue, fruit weight, SL, and crop density will
not accurately predict the incidence of bitter
pit after storage. However, the model based
on the passive method (Al Shoffe et al., 2019)
and our model based on fruit peel analysis
plus SL can be used to identify orchards with
a relatively low risk (<15%) of developing
bitter pit after cold storage.
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