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Abstract. A prototype phenology-driven Bayesian belief network (BBN) model, named
BxNET, was developed to represent the relationship between fresh market yield (U.S. #1
grade) and agroclimatic variables known to influence the critical storage root initiation
stages in ‘Beauregard’ sweetpotato. This data-driven model was developed from
experimental data collected over 3 years of field trials in which management variables
were kept as uniform as possible. The BBN was developed assuming that soil moisture
measured at the 15-cm depth was not a limiting variable during the first 20 days after
transplanting, during which the onset of storage root initiation determined the majority
of storage root yield at harvest. The absence of influence from weeds, disease, insect pests,
and chemical injury was also assumed. Accuracy of the fully parameterized working
prototype was estimated through leave-one-out cross-validation (14% error rate),
validation on an independent test data set (20% error rate), and area under the receiving
operator characteristic curve (0.59) analysis. As a result of its empirical nature, BXNET
is only applicable to the cultivar, location, and the limited set of environmental (air
temperature, soil temperature, relative humidity, solar radiation) and management
variables as defined in the 3-year study. This beta-level model can serve as a foundation
for the development of a final working model through further testing and validation.
Additional validation data may require revision of the current model structure and
conditional probabilities. These validation studies will also allow the model to be used in
other locations. BXNET can be expanded to include other causal variables such as weed
incidence, disease presence, insects, and chemical injury. Such an expansion can lead to
the development of a model-based decision support system for sweetpotato production.
Such a system can help model alternative management scenarios and determine the most
reasonable management interventions to achieve optimum yield outcomes under
different agroclimatic conditions.

Singh et al. (1992) predicted that computer-
based crop growth models were going to in-
crease for root crops, including sweetpotatoes.
To our knowledge, only two process-based
models have been published thus far (Mithra
and Somasundaram, 2008; Somasundaram and
Mithra, 2008). Such models represent an im-
portant step in further understanding the com-
plex interactive nature of management and
agroclimatic variables on sweetpotato stor-
age root yield variability. These phenology-
driven models specified that storage root
initiation did not start until 4 weeks after
planting. However, we have documented that
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storage root initiation, defined as the appear-
ance of secondary cambium (Togari, 1950;
Wilson and Lowe, 1973), can be detected as
early as 13 d after transplanting (DAT) in
‘Beauregard” grown under field conditions
(Villordon et al., 2009a). The temporal dis-
crepancy associated with the onset of storage
root initiation may be attributable in part to
differences in cultivar, management prac-
tices, prevailing environment, and the defini-
tion of “storage root initiation,” i.e., visible
(enlarged storage roots) versus anatomical
(appearance of anomalous cambia in adven-
titious roots without visible enlargement).

The need for accurate prediction, inference,
risk analysis, and decision-making is magni-
fied by the underground nature and well-
documented yield variability of sweetpotatoes.
For example, Louisiana statewide total yields
averaged 18.9 ton/ha in the last 20 years
(NASS, 2009). Assuming 70% were graded
as U.S. #1 storage roots, the calculated
average U.S. #1 yield (UST1YIELD) would
have been 13.2 ton/ha or ~1.2 U.S. #1
storage roots per hill (0.3-m in-row spacing,
1-m centers, average weight of roots = 0.34
kg, no. of plants per ha = 31,250). Yet, the
USIYIELD potential of ‘Beauregard’ is
clearly higher, i.e., 19.2 ton/ha (=~1.9 U.S.
#1 per hill) (Rolston et al., 1987). The
availability of well-calibrated agroclimatic-
driven crop models will enable researchers to
account for yield variability resulting from
agroclimatic background and facilitate the
investigation of effects attributed to manage-
ment variables. This underscores the need
to explore other modeling paradigms as well
as to perform calibration of models for a
cultivar grown under a specific production
environment. Ji et al. (2007) suggested that a
well-calibrated empirical model offers a more
reliable method of investigating crop response
than an inadequately calibrated process-based
model.

An alternative modeling approach uses
Bayesian belief networks (BBNs). BBNs
graphically and probabilistically represent
correlative and causal relationships among
variables (Cain, 2001; Neopolitan, 2003).
BBNs offer many advantages in modeling
a domain (sweetpotato production system)
that is characterized by an incomplete under-
standing of the interaction of agroclimatic,
management, and biological variables. The
graphical nature of BBNs facilitates ease
in interpretation of the causal relationships
among variables. In addition, BBNs allow
combining of domain-specific (expert knowl-
edge) and empirical data obtained from
planned or ongoing experiments. An added
benefit is that BBNs can learn from small and
incomplete data sets (Uusitalo, 2007). BBNs
have been used extensively in ecology and
wildlife management to describe the influence
of environmental variables on ecological-
response variables (Marcot et al., 2006). In
agriculture, BBNs have been used to model the
effect of climate change in potato production
(Solanum tuberosum) (Gu et al., 1994), predict
yield response of winter wheat (Triticum
aestivum) to fungicide application programs
(Tari, 1996), and the development of a decision
support system for growing malting barley
(Hordeum vulgare L.) without the use of
pesticides (Kristensen and Rasmussen, 2002).

Togari (1950) provided evidence that
management and environmental variables
within the first 20 DAT influenced adventi-
tious root cambium activity in sweetpotato,
which in turn determined the degree of
lignification. It was determined early on that
lignification rendered an adventitious root
incapable of becoming a storage root and
that storage root number was determined
within this time period (Togari, 1950; Wilson
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and Lowe, 1973). This timeframe for storage
root initiation was locally validated (Chase,
LA) for the sweetpotato cultivar Beauregard
and that adventitious roots initiated within 7
DAT comprised 86% of final storage root
yield under certain conditions (Villordon
et al., 2009a, 2009b). Togari (1950) enumer-
ated the following variables that increased
cambium activity: potash, soil moisture, and
optimum temperature. On the other hand, the
following variables reduced cambium activ-
ity that eventually led to lignification: small
seed roots, poor quality of transplants, sub-
optimum temperature, dry and compact soil,
shading, and excessive nitrogen. The objec-
tive of this study was to develop a prototype
or beta-level Bayesian network model to
represent the relationship between agrocli-
matic variables measured within 20 DAT and
U.S. #1 sweetpotato yield from experimental
plots under uniform management conditions.
We assumed the absence of influence from
weeds, disease, insect pests, and chemical
injury. The long-term goal is to develop a
more comprehensive systemwide model that
incorporates other management variables and
identifies specific scenarios that result in
economic loss for producers. We undertook
this work using the rapid prototyping strategy
(Connell and Shafer, 1989). Rapid prototyp-
ing is a development paradigm in which
a scaled-down system or portion of a system
is constructed in a relatively short period of
time, tested, and improved through numerous
iterations (Turban, 1992).

Materials and Methods

Study site. All field experiments were
carried out from 2007 to 2009 in well-drained
research fields in Chase, LA (lat. 32°6" N,
long. 91°42" W). The soil taxonomic class
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was fine-silty, mixed, active, thermic Typic
Glossaqualfs. The soil bulk density was 1.3
g-cm® (15.2-cm depth, mean of three mea-
surements). Virus-tested ‘Beauregard’ Gl
seed roots (5.1 to 8.9 cm diameter and 7.6
to 22.9 cm in length) served as the transplant
source and were bedded on the following
dates in each of 3 years: 23 Mar. 2007, 31
Mar. 2008, and 3 Apr. 2009. In each year,
seed roots were preheated at 80 °F for 7 d
before bedding. Seed beds were fertilized
with 50 kg-ha™' nitrogen, 118 kg-ha™' P,Os,
and 135 kg-ha' K,0. Research plots were
prepared by disk cultivating fields followed
by broadcast application of chlorpyrifos in-
secticide (2.2 kg ai/ha). A second disking
operation was performed and then rows were
formed on 1-m centers. In 2007, plots were
6 m long, 3 m in 2008, and 3 and 1.5 m
(microplot) in 2009. In all years, record rows
were separated by two guard rows. Plots were
fertilized with 118 kg-ha™ P,Os and 135
kg-ha' K,O. Nitrogen (50 kg-ha™') was
side-dressed at 30 to 35 DAT or split-applied
(half was applied at preplant and the re-
mainder was side dressed at 30 to 35 DAT).
Herbicide application, consisting of a tank
mix of clomazone (840 g-ha ') and flumiox-
azin (36 g-ha™'), was performed immediately
before transplanting. In all years, cutting of
transplants and setting was performed by one
person to reduce variability associated with
transplant operations, especially in transplant
selection and depth of setting. All transplant
operations were performed within 2 d of cut-
ting planting materials. Transplants (eight to
12 nodes with intact leaves; at least 0.3 cm
thick at the base) were cut from seed beds and
planted on the same day or held upright over-
night. The transplanting dates ranged from 15
May to 28 June across years. A white-skinned,
white-fleshed cultivar (O’Henry) was used as
a guard plant on each end of the plot to reduce
the occurrence of oversized roots associated
with the lack of intrahill competition in these
locations. ‘O’Henry’ is a mutant selection of
‘Beauregard’ and did not represent any com-
petitive difference. Uniform transplants were
manually set (three to five nodes under the
surface; in-row spacing = 30 cm) and watered
in with ~177 mL of water. Within 3 to 5 DAT,
supplemental overhead irrigation was supplied
with a traveling irrigation sprinkler if a rainfall
event did not occur. This was routinely per-
formed to prevent transplant desiccation and to
help ensure uniformity of transplant establish-
ment. Plant stand was determined 15 DAT
(100% in all years). In all years, soil moisture
was measured with a HydroSense Soil Water
Content Management System (CS-620, 20-cm
probe; Campbell Scientific, Inc. Logan, UT)
that was calibrated gravimetrically. For the soil
type used in the study, volumetric water con-
tent (VWC) = 16% represented ~50% of field
capacity and VWC in the range of 10% to 20%
has been previously locally validated as opti-
mal for sweetpotatoes grown in the area
(Constantin et al., 1974). For transplant estab-
lishment, overhead irrigation was applied until
~50% of field capacity. Thereafter, supple-
mental irrigation was supplied when soil mois-

ture approached 8% to 10% VWC at the 15-cm
depth. After 70 DAT, supplemental irrigation
was only applied when soil VWC approached
10%. Preharvest irrigation was only performed
in extremely dry conditions to facilitate harvest
operations. In 2009, soil moisture monitoring
was augmented by the installation of soil
moisture sensors (ECH20 EC-5; Decagon
Devices Inc., Pullman, WA) linked to auto-
mated data loggers (EMS0; Decagon Devices
Inc.). The data loggers were connected wire-
lessly to a data collection device (DataStation;
Decagon Devices Inc.). Soil moisture sensors
(5 cmin length) were installed vertically at two
depths (5 and 15 cm) in two plots in each of
three planting dates. The purpose of these
automated sensors was to better document soil
moisture variation in the soil profile (Fig. 1).
The ECH2O sensor readings were calibrated
with the CS-620 readings. For the purpose of
this work, we used the VW C readings obtained
from the CS-620 20-cm probe.

We have previously described a simple
system of describing morphologically dis-
tinct storage root initiation phenological
stages in ‘Beauregard’: SR1 (transplant es-
tablishment, i.e., terminal leaves start to
open, appearance of adventitious roots, pro-
toxylem development, primary cambium de-
velopment) (Fig. 2A), SR2 (seven to 14 new
leaves; one to four branches; appearance of
anomalous or secondary cambium; storage
root initiation) (Fig. 2B—C), and SR3 (21 to
42 new leaves; three to four branches; ap-
pearance of visible initiated roots; adventi-
tious root with visible localized swelling,
minimum of 0.5 cm in diameter or greater)
(Fig. 2D) (Villordon et al., 2009b).We have
adopted this approach to describe the pre-
sumptive phenological stages in this work. In
2008 and 2009, five to 10 random plants in
each planting date were sampled to verify
onset of SR1 (3 to 7 DAT) and SR2 (13 to 18
DAT). In SR2 sampling, all adventitious
roots (greater than 5 cm long) from each
plant were sectioned, stained with toluidine
blue (Eguchi and Yoshida, 2008), and exam-
ined under a microscope. A similar sampling
approach was also used to verify SR3 (28 to
35 DAT). In 2007 and 2008, a one-row
mechanical digger was used for harvesting.
In 2009, plots were manually harvested as
a result of successive rainfall events in
August, September, and October. The harvest
dates ranged from 13 Aug. to 7 Nov. across
years. At harvest, storage roots were graded
according to U.S. Department of Agriculture
(USDA) standards (USDA, 2005): U.S. #1
(5.1 to 8.9 cm diameter and 7.6 to 22.9 cm in
length), canner (2.5 to 5.1 cm in diameter and
5.1 to 17.8 cm in length), and jumbo (larger
than both groups). Storage roots were
counted and weighed. To reduce variability
associated with grading of yield classes, only
one person performed grading and counting
in all years, and digital photographs were
taken of all modeling plots for later reference.
Leaf tissue samples (fifth fully expanded leaf
from the terminal of the longest branch) were
collected 35 to 50 DAT from one represen-
tative planting date in each of 2007 and 2008.
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Fig. 1. Plots of soil moisture, expressed as volumetric water content (VWC), from ‘Beauregard’
sweetpotato field plots in Chase, LA, in 2009. ECH20 EC-5 sensors (Decagon Devices Inc., Pullman,
WA) were installed vertically at 5 and 15 cm. The sensors were connected to a data collection device
(EM50 data logger; Decagon Devices Inc.) wirelessly connected to a base radio station (DataStation;
Decagon Devices Inc.). Each rise in VWC represented a rainfall or irrigation event.

Fig. 2. Representative adventitious root samples showing presumptive phenological stages SR1 (A), SR2
(B—C), and SR3 (D) of ‘Beauregard’ sweetpotato grown in Chase, LA. 1C depicts the appearance of
anomalous cambium (AC) at SR2. PC = primary cambium; scale bar = 200 uM. SR1 sample was
obtained from plots transplanted 23 May 2008 and sampled 30 May 2008. SR2 sample was obtained
from plots transplanted 15 May 2009 and sampled 29 May 2009. SR3 sample was obtained from plots
transplanted 23 May 2008 and sampled on 19 June 2008. Adventitious roots from 1B were used as
source of cross-sections for 1C. Agroclimatic and management variables are described in “Materials
and Methods.”
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Soil samples were collected in November in
each of 3 years. Leaf and soil samples were
analyzed at the LSU AgCenter Soil Test and
Plant Analysis Laboratory, Baton Rouge,
LA. Soil analysis included organic matter,
pH, phosphorus (P), potassium (K), calcium
(Ca), magnesium (Mg), sodium (Na), sulfur
(S), copper (Cu), zinc (Zn), and boron (B).
Leaf tissue analysis included P, K, Ca, Mg,
S, B, Zn, Cu, Fe, Manganese, aluminum, Na,
and total nitrogen. Description of analytical
procedures is available from http://www.
Isuagcenter.com/stpal/ (1 Jan. 2010). Results
of the soil and plant tissue analyses did not
show any significant deviation from currently
acceptable levels of soil and plant tissue
nutrient ranges (Bouwkamp, 1985; Mills and
Jones, 1996) (data not shown). Furthermore,
nematode assays showed that nematode dam-
age potential was classified as “low” in all
years by the LSU AgCenter Nematode Advi-
sory Service (data not shown).

Agroclimatic data were obtained from
on-site National Oceanic and Atmospheric
Administration (soil and air temperatures,
rainfall) and Louisiana Agriclimatic Infor-
mation System (relative humidity, solar ra-
diation) weather stations, respectively.
Descriptive statistics of agroclimatic infor-
mation from May to September in each year
are presented in Figure 3.

Data preprocessing. There were 21 re-
cords (21 planting and harvest date combi-
nations) in the modeling data set (MDS).
MDS variables included U.S. #1 count
(USICOUNT) and weight, growing degree-
days (GDD) for each planting date—harvest
date combination, and agroclimatic data. We
have previously empirically derived a method
for calculating GDD for Louisiana-grown
sweetpotatoes (Villordon et al., 2009c).
Briefly, GDD was calculated using this
method: maximum daily temperature (Tmax)
— base temperature (B, 15.5 °C), where if
Tmax > ceiling temperature (C, 32.2 °C),
then Tmax = C, and where GDD = 0 if
minimum daily temperature (Tmin) < B.
GDD was used to represent accumulated air
heat units in each phenological phase and to
adjust for differences in growing periods
(planting and harvest date combinations).
Soil temperature was represented as soil heat
units (SHU). SHU was calculated using this
method: {[(Tmax + Tmin)/2] — B} where
SHU = 0 if Tmin < B (B = 18.3 °C). The
method for calculating SHU as well as C and
B was empirically derived from the MDS
using the minimum cv approach (Dufault,
1997; Jenni et al., 1996). The data were
entered into an Excel spreadsheet (Version
7; Microsoft, Redmond, WA) and natural log
transformed. Transformation was performed
to make the estimation process more robust
and reduce unstable results (Kuhnert and
Hayes, 2009). Correlation analysis was per-
formed among the agroclimatic variables to
determine if linkages were going to be estab-
lished during model development (Marcot
et al., 2006).

Development paradigm. We adopted the
general guidelines that Marcot et al. (2006)
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Fig. 3. Plots of mean values of air temperature (A—B), soil temperature (C-D), relative humidity (E-F), solar radiation (G), and rainfall (H) during most of the
growing season for ‘Beauregard’ sweetpotato grown in Chase, LA (2007 to 2009). Values represent means calculated at 10-d intervals starting from 1 May to
30 Sept. in each year. Agroclimatic data were obtained from on-site National Oceanic and Atmospheric Administration (NOAA) (soil and air temperatures,
rainfall) and Louisiana Agriclimatic Information System (relative humidity, solar radiation) weather stations. Soil temperature depth = 15 cm. Bars =sp (n=
10). Max = maximum; min = minimum; Air = air temperature (°C); soil = soil temperature (°C); RH = relative humidity (%); Rad = solar radiation (Langleys;
1 Langley/d = 0.48 W-m ?); Rain = rainfall (mm).
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proposed for developing, testing, and revis-
ing BBNs, especially in identifying alpha-,
beta-, and gamma-level models. The first step
comprised of creating influence diagrams
(AM1 to AM12) of hypothesized “causal
web”” of agroclimatic variables affecting the
outcome of interest (US1YIELD) (Fig. 4).
The influence diagrams were constructed
using Netica software (Version 4.09; Norsys
Software Corp., Vancouver, Canada). The
underlying biological principle in the devel-
opment of the model structure was that
storage root number (USICOUNT) was de-
termined in the first 20 DAT and that final
weight at harvest (US1YIELD) was a func-
tion of time [days to harvest (H) expressed as
GDDH] assuming other variables were uni-
form. The first 20 DAT was also classified
into two distinct phenological stages: SR1 (1
to 10 DAT) and SR2 (10 to 20 DAT)
(Villordon et al., 2009a). Where present,
SR1 and SR2 were treated as “latent nodes™
or “hidden variables.” The network struc-
tures or topologies of candidate alpha-level
models AM1, AM3, and AM4 represented
the hypothetical relationship of agroclimatic
variables and US1YIELD assuming the ab-
sence of SR1 and SR2 effects. The network

structures of AM1 and AM2 resembled naive
Bayes topology and were used to represent
models that presumed the lack of dependen-
cies among the causal variables. AM1, AM3,
and AM4 used agroclimatic data for the first
20 DAT. In contrast, the network topologies of
AM2 and AMS to AM9 assumed the existence
of phenological stages SR1 and SR2 in helping
to represent the relationship between agro-
climatic variables and USTYIELD. The hypo-
thetical network structures of several candidate
models (AMS to 10) were based in part on
a published phenology-driven BBN model
for potato growth and development (Gu et al.,
1994). Where present, arcs or links among
agroclimatic variables were determined
through correlation analysis (Marcot et al.,
2006). AM11 was a structure derived from
the “learn new network™ function of GENiE
(Bersion 2.0; Decision Systems Laboratory,
University of Pittsburgh, Pittsburgh, PA). In
GENIE’s network structure learning algo-
rithm, agroclimatic predictor variables were
assigned to temporal tiers and US1YIELD
was specified as dependent on GDDH and
USICOUNT. The learning method was
greedy thick thinning. AM12 was a structure
derived from the “learning wizard” function

of Hugin Researcher (Version 7.2; Hugin
Expert A/S, Aalborg, Denmark). In this mode,
Hugin Researcher attempted to learn the
model structure without prior assumptions of
any relationships among all variables in the
data set. The only supplied inputs (final step of
“learning wizard”) were to ensure that appli-
cable variables influenced USICOUNT or
USI1YIELD. As a result of current limitations
of GENIE and Hugin Researcher regarding the
use of latent variables with missing values,
SR1 and SR2 were not included in the iden-
tification of the network structure. In the
second step, alpha-level BBNs were subse-
quently developed from the hypothetical in-
fluence diagrams through parameter learning
from empirical data, i.e., MDS. A candidate
beta-level BBN was subsequently selected
from these alpha BBNs based on estimates
of accuracy and model performance obtained
through cross-validation, validation on inde-
pendent data set, receiver operating character-
istic (ROC) analysis, and performance relative
to a baseline model (logistic regression).
Parameter learning. The procedures for
parameter learning [determination of condi-
tional probability table (CPT) at each node]
from the experimental data set in a spreadsheet

& D () i
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Fig. 4. Alpha-level Bayesian belief network structures evaluated for prototype beta-level model development of the relationship between U.S. #1 yield and
agroclimatic variables known to influence storage root initiation in sweetpotato ‘Beauregard’ grown in Louisiana. RAD = solar radiation (Langleys; 1
Langley/d = 0.48 W-m); RH = relative humidity (%); GDDH = growing degree-days to harvest; SHU = soil heat units; USICOUNT = U.S. #1 count;
USIYIELD = U.S. #1 yield in tons/ha. Where present, SR1 and SR2 nodes represented presumptive phenological stages corresponding to protoxylem
development (1 to 10 DAT) and anomalous cambium development or storage root initiation (10 to 20 DAT), respectively.
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file format were based on the procedures
described in Netica’s built-in user manual.
The learning algorithm was gradient descent
(Binder et al., 1997) as implemented in Netica.
This algorithm permits learning when some
variables are hidden (Binder et al., 1997),
i.e., variables that are not currently measur-
able (SR1 and SR2). Discretization was per-
formed using Netica’s built-in discretization
algorithm. Except for USIYIELD and
USICOUNT, all nodes were discretized into
three states. USIYIELD and USICOUNT
were discretized into two states. Preliminary
modeling experiments showed that three-
state discretization of USIYIELD and
US1COUNT resulted in poor performing
models (data not shown).

Model assessment and selection. The
comparative performance of the BBN models
was estimated using the following approaches:
cross-validation (leave-one-out), validation
with independent (unseen) test data set
(VID), and area under the receiving opera-
tor characteristic curve (AUC) analysis of
the VID results. In leave-one-out cross-
validation, given n = 21 MDS data records,
n-1 was used to learn the model and the
remaining one record was used to test model
performance. The procedure was repeated
n times, each time with different learning—
testing record combinations. For each model,
the error rate was reported as the percentage of
misclassified cases across n runs. VID was
performed with data that were previously used
to develop a GDD model (Villordon et al.,
2009c). A subset of this data set (n = 98),
comprised of yield and agroclimatic data from
2002 to 2006, was used for validation. This
data set comprised yield data from replicated
tests in research plots as well as grower fields.
As a result of limitations of earlier experimen-
tal methodology, this test data set did not
contain soil moisture data. To simulate rep-
lications (pseudoreplications), Insightful Data
Miner (Version 8; Insightful Corp., Seattle,
WA) was used to randomly generate 10 unique
data partitions (n = 50% of the test data set).
Each candidate alpha BBN was subsequently
validated on each pseudoreplicate (» = 10).
Measurements of accuracy included error rate
and AUC analysis (mean of 10 pseudorepli-
cates). These values were calculated based on
the “test with cases” option in Netica to
classify the outcome of unseen data. Error rate
was automatically calculated by Netica when
performing the “test with cases” algorithm.
This value (expressed in percentage) was
calculated by dividing the number of misclas-
sified cases by the total number of clas-
sifications made. For AUC analysis, the “test
with cases” option in Netica generated sensi-
tivity and specificity estimates as described in
Netica’s built-in user manual. The sensitivity
and 1-specificity estimates were subsequently
entered into a ROC analysis spreadsheet
(Watkins, 2000) for calculation of AUC values
and for plotting the ROC curve. The predictive
accuracy of the candidate alpha BBNs were
compared with logistic regression (baseline
model). U.S. #1 yield was reclassified into
“LOW” or “HIGH” based on a threshold of
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24 tons/ha USTYIELD (LOW = USIYIELD <
24 tons/ha; HIGH = USTYIELD > 24 tons/ha).
This threshold was based on the discretization
threshold for USTYIELD in the BBN model.
Logistic regression analysis using forward
selection was performed in SAS Analyst
(Version 9.2; SAS Institute, Cary, NC). GDD-
related variables were manually included
where feasible, i.e., convergence criterion was
satisfied. ROC curves from the logistic regres-
sion analyses were calculated using the ROC
Curve procedure in SPSS (Version 15.0; SPSS
Inc., Chicago, IL). The performance of the
candidate models were then ranked based on
cross-validation performance, VID error rates,
and AUC analysis.

Results

There was agroclimatic variability within
and among periods corresponding to storage
root number determination (SR1 and SR2)
and initial enlargement (SR3) within and
among years (Fig. 3). For example, in 2007,
air temperatures peaked around mid-August
(101 d; Fig. 3A-B). However, the peak air
temperatures in each of 2008 and 2009 were
achieved in late July (81 d) and late June (51
d), respectively (Fig. 3A-B). In each year,
soil temperature varied considerably among
planting dates (Fig. 3C-D). For example, in
2009, the mean minimum soil temperature
during the last 14 d of May (16 to 31 d) and
~10 d into June (32 to 42 d) was 21 °C; in the
next 14 d (43 to 57 d), this value was 26 °C
(Fig. 3D). There was a wide divergence of
measured relative humidity (RH) across
years, especially around the start of the
transplanting period (mid-May; 15 d) and in

late June to early July (46 to 76 d; Fig. 3E-F).
Minimum RH was below 40% for certain
periods in 2008 (mid-July; 71 to 91 d) and
2009 (late June; 51 to 61 d) (Fig. 3F).
Measured solar radiation showed distinct
variability within and across years (Fig.
3G). Mean daily net solar radiation during
most of June (32 to 61 d) was comparatively
lower in 2007 (below 500 Langleys/d or 242
W-m?) than in 2008 and 2009 (Fig. 3G).
Rainfall events varied among years, although
rainfall distribution was relatively more uni-
form during the transplanting period in 2007
(mid-May to late June; 15 to 61 d) (Fig. 3H).
There were no rainfall events recorded for
certain periods in 2008 (between 29 May and
19 June; 29 to 50 d) and 2009 (between 5 June
and 30 June; 36 to 61 d) (Fig. 3H). Model
development was based on the assumption
that other variables such as soil nutrients,
crop nutrition, soil moisture, disease, etc.,
were not limiting. In 2009, further descrip-
tion of soil moisture states at two depths (5
and 15 cm) showed intraseason soil moisture
variability (Fig. 1). In general, the soil mois-
ture variability within the soil profile, as
influenced by rainfall and irrigation events,
was more pronounced when air and soil
temperatures began to increase during the
transplanting period, e.g., after the first week
of June in 2009.

Candidate model AMO consistently ranked
high across the various measures of model
accuracy (Table 1). AM9 was the only model
structure that also consistently showed com-
parable performance relative to the logistic
regression model across all measures of accu-
racy. The main difference between AM9
versus the other candidate models was the

Table 1. Comparative predictive performance of alpha-level Bayesian belief network and logistic
regression models using leave-one-out cross-validation error rates, validation on independent test
data set error rates, and area under the receiver operating characteristic curve (AUC) for representing
the relationship between agroclimatic predictor variables and sweetpotato U.S.#1 yield in Louisiana.

Cross-validation Validation®

Model” error rate” (%) Error rate (%) SE AUC SE

AMI 19 42d 1.2 030¢ 0.02
AM2 29 46 d 2.1 0.62 a 0.02
AM3 14 61 f 2.1 025e 0.02
AM4 14 45d 2.0 029 ¢ 0.03
AMS5 14 55e 1.6 0.39d 0.02
AM6 14 S4e 1.3 0.42 cd 0.02
AM7 14 43d 1.6 0.45 be 0.02
AM3 14 23 b 1.4 0.41 cd 0.02
AM9 14 20 ab 1.2 0.59 a 0.02
AM10 14 53e 2.6 0.37d 0.03
AM11 14 30¢ 1.4 0.58 a 0.03
AM12 14 17a 23 0.50b 0.00
LOGISTIC 14 18a 1.5 0.62 a 0.02

“AM1 to AM12 represented candidate Bayesian belief network topologies defined in the “Materials and
Methods” section. LOGISTIC = logistic regression (forward selection) was performed in SAS Analyst
(Version 9; SAS Institute, Cary, NC). LOGISTIC was considered as the baseline model. Validation error
rates represent mean (10 pseudoreplicates) error rates + st of the mean.
YCross-validation method was leave-one-out where n=21. For each model, error rate was calculated as the

percentage of misclassified cases across n runs.

*The independent data set (n = 98) was partitioned into 10 unique data partitions (n = 50%) and each model
was run on all partitions (10 pseudoreplicates). Error rates were calculated with the Netica “test with
cases” option. Calculation of AUC is defined in the “Materials and Methods” section. AUC values
represent mean (10 pseudoreplicates) error rates. SE = standard error of the mean. Means and mean rank
followed by the same letter within columns are not significantly different at P < 0.05. Underscored mean
error rates and AUC represented model performance estimates that were not significantly different relative

to LOGISTIC.
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presence of additional arcs or links that
represented correlations among causal vari-
ables and the causal influence of SR1 on final
yield. AM9 was chosen as the final prototype
model (beta-level BBN). The compiled AM9
model (here after referred to as BxNET
version 1.00b) is shown in Figure 5 and the
beliefs are shown for each node in the form of
belief bars. ‘Beauregard’ has frequently been
coded as “BX” in field plots, genotype
screening trials as well as in some published
reports, for example Mcharo and LaBonte
(2007). The version number designation fol-
lows the recommendation by Marcot et al.
(2006) in which 1.00b signifies beta-level
status.

BxNET was used to simulate the out-
comes of multiple scenarios between the
predictor variables and USIYIELD (Fig. 6).
Scenario 6A represented relatively low air
and soil temperatures, similar to the condi-
tions that were observed during the second
half of May (15 to 31 d) in each of 2007,
2008, and 2009 (Fig. 3A-D). Under these

conditions, mean air and soil temperature
ranges were 17 to 28 °C and 20 to 25 °C,
respectively. Scenario 6B represented rela-
tively high soil and air temperatures, similar
to a 3-week period in June 2009 (Fig. 3A-D;
41 to 61 d). During this period, the mean
ranges of air and soil temperature were 22 to
36 °C and 27 to 36 °C, respectively. Scenario
6C represented “intermediate” solar radia-
tion and air and soil temperatures, similar to
conditions observed during the last week of
May and first two weeks of June 2007 (Fig.
3A-D; 25 to 45 d). The “intermediate” mean
air and soil temperature ranges were 20 to
31 °C and 23 to 8 °C, respectively. The
finding for mean RH was entered as 71% to
73% in all cases. Given GDD = 1319 to 1383,
the predicted output varied: USIYIELD =
HIGH (US1YIELD > 24 t-ha™') probabilities
for scenarios 6A, 6B, and 6C were 42%, 2%,
and 57%, respectively. When GDD was
increased to 1383 to 1579 (longer grow-
ing period), the predicted output varied:
US1YIELD = HIGH probabilities for scenar-

ios 6A, 6B, and 6C were 28% (Fig. 6D),
0.04% (Fig. 6E), and 99% (Fig. 6F), respec-
tively. In general, GDD estimates varied with
calendar days, but we were able to experi-
mentally attain GDD = 1383 at 105 DAT.
Thus, 1383 to 1579 GDD represented 105 to
119 DAT. Past calendar day-based studies
indicated that 115 DAT was the preferred
number of days to harvest for ‘Beauregard’
(Villordon et al., 2003).

Discussion

Sweetpotato crop yield components in-
clude plant density (plant spacing and stand),
storage root count per hill, and weight. All
of these variables were accounted for in the
development of sweetpotato ‘Beauregard’
beta-level BBN named BxXxNET (Version
1.00b). This phenology-driven prototype
model represented the relationship between
USIYIELD and agroclimatic variables (air
and soil temperature, RH, and solar radia-
tion) that have been documented to directly
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Fig. 5. A prototype Bayesian belief network model, named BXNET (Version 1.00b), representing casual effects of some agroclimatic variables on U.S. #1 yield in
‘Beauregard’ sweetpotato grown in Chase, LA. BXNET was trained using the gradient descent method as implemented in Netica (Version 4.09; Norsys
Software Corp., Vancouver, Canada). Horizontal bars (belief bars) and values within nodes are probabilities of states of each variable. Natural log-transformed
data were used to calculate the conditional probability values. Corresponding non-transformed ranges are shown for all variable states or ranges. Mean
transformed value + sp are shown below the belief bars. Intermediate nodes SR1 and SR2 represent presumptive phenological stages corresponding to
protoxylem development (1 to 10 DAT) and anomalous cambium development or storage root initiation (10 to 20 DAT), respectively. Input nodes: RAD =
solar radiation (Langleys; 1 Langley/d = 0.48 W-m™2); RH = relative humidity (%); GDDH = growing degree-days to harvest; SHU = soil heat units;
USICOUNT = U.S. #1 count. Output node: USIYIELD = U.S. #1 yield in tons/ha. Details of the experimental data and other procedures are defined in

“Materials and Methods.”
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Fig. 6. Bayesian belief network scenarios representing the relationship between days to harvest [growing degree-days (GDD)] and U.S. #1 storage root yield as
influenced by air and soil temperatures measured during SR1 and SR2 storage root initiation stages of ‘Beauregard’ sweetpotato grown in Louisiana. Scenario
A represented relatively low air and soil temperatures during SR1 and SR2 (minimum air and soil heat unit accumulation). Scenario B represented relatively
high air and soil temperatures during SR1 and SR2 (maximum air and soil heat unit accumulation). Scenario C represented intermediate low air and soil
temperatures during SR1 and SR2 (intermediate air and heat unit accumulation). Scenarios D, E, and F represented extension of growing period for Scenarios
A, B, and C, respectively. Days to harvest was expressed as growing degree-days (GDDH). The finding for RH (not visible) was entered at 71% to 73% and soil
moisture ranged from 10% to 20% for all scenarios. Details of the experimental data and other procedures are defined in “Materials and Methods.” Natural
log-transformed data were used to calculate the conditional probability tables. Corresponding non-transformed ranges are shown for all variable states or
ranges. Mean non-transformed value + sp are shown below the belief bars. SR1 and SR2 represent presumptive phenological stages corresponding to
protoxylem development (1 to 10 DAT) and anomalous cambium development or storage root initiation (10 to 20 DAT), respectively. RAD = solar radiation
(Langleys; 1 Langley/d = 0.48 W-m2); RH = relative humidity (%); GDDH = growing degree-days to harvest; SHU = soil heat units; USICOUNT = U.S. #1

count; USTYIELD = U.S. #1 yield in tons/ha.

influence the determination of storage root
number (Eguchi et al., 1998; Togari, 1950).
The presumptive phenological stages were
represented by the latent nodes SR1 and SR2.
Within the context of BBN development,
latent or intermediate nodes are typically
used to summarize major themes in influence
diagrams (Marcot et al., 2006). Within this
modeling paradigm, we used SR1 and SR2 to
represent hypothetical biological response to
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external stimuli. If detected, such nodes or
variables that currently cannot be measured
might lead to better understanding of the
domain under consideration or even to sci-
entific discovery (Zhang et al., 2004). As an
example of its potential use, BXNET was
used to simulate the modulating influence of
prevailing SR1 and SR2 agroclimatic condi-
tions on the relationship between days to
harvest (expressed as GDD) and US1YIELD

(Fig. 6). The simulation scenarios demon-
strated that delaying harvest did not always
lead to increased U.S. #1 yield; rather, the
outcome was determined in part by the
modulating effects of agroclimatic condi-
tions extant at SR1 and SR2. The likelihood
of obtaining USTYIELD = HIGH was great-
est (probability = 99%) when air and soil heat
unit accumulation were moderate during SR1
and SR2 (Figs. 6C and 6F). When the
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prevailing air and soil temperatures were
relatively low (minimum air and soil heat
unit accumulation) at SR1 and SR2, the
probability for USIYIELD = HIGH de-
creased to 28% (Fig. 6D). When air and soil
temperatures were relatively high during SR1
and SR2 (maximum air and soil heat unit
accumulation), the probability for obtaining
USIYIELD = LOW increased to almost
100% (Fig. 6E). As an example, we observed
that USICOUNT and USIYIELD were 1.9
and 20 tons/ha, respectively, under low pre-
vailing air and soil temperatures at SR1 and
SR2 (planting date = 15 May 2009; GDD
SR1 =78; GDD SR2 = 135; SHU SR1 = 46;
SHU SR2 = 89; GDDH = 1335) (data not
shown). Under relatively high prevailing air
and soil temperatures at SR1 and SR2, we
observed that USICOUNT and US1YIELD
were 1.7 and 22.3 tons/ha, respectively
(planting date = 15 June 2009; GDD SR1 =
167; GDD SR2 = 167; SHU SR1 = 139; SHU
SR2 =139; GDDH = 1346) (data not shown).
In contrast, we observed that USICOUNT
and US1YIELD were 2.5 and 29 tons/ha,
respectively, when SR1 and SR2 occurred
under “moderate” air and soil temperatures
(planting date = 30 May 2007; GDD SR1 =
159; GDD SR2 = 164; SHU SR1=113; SHU
SR2 =119; GDDH = 1375) (data not shown).
These results are consistent with past observa-
tions that sweetpotato storage root formation
and growth are sensitive to relatively low and
high air and soil temperatures (Bouwkamp,
1985; Ravi and Indira, 1999). Past research
has shown that the yield of low temperature-
treated (10 to 15 °C) plants was only 75%
of controls (20 to 25 °C), although the for-
mer showed comparable vine growth when
taken out of the low-temperature treatment
(Bouwkamp, 1985). Soil temperatures be-
tween 20 and 30 °C favored storage root
formation, whereas soil temperatures greater
than 30 °C generally promoted shoot growth

at the expense of storage root growth (Ravi
and Indira, 1999). To help explain the results
of these modeling scenarios, representative
storage root yields from various plots in 2009
are shown in Figure 7A-B. From a biological
perspective, the majority (86%) of adventi-
tious roots that were initiated from the un-
derground nodes at 3 to 7 DAT (SR1, Fig. 2A)
possessed the potential to become storage roots
(Villordon et al., 2009a). Storage root initia-
tion, defined as the appearance of anomalous
or secondary cambium, occurred 13 to 18 DAT
under field conditions (SR2, Fig. 2B—C). When
SR1 and SR2 occurred within this timeframe
(3 to 20 DAT), initiated storage roots typically
attained a diameter of 0.5 cm or more at 30
DAT (SR3, Fig. 2D). Under “moderate”
conditions, soil moisture was generally uni-
form as measured at the 5- and 15-cm depths
(Fig. 1) and storage root initiation was ob-
served across all underground nodes (Figs. 2D
and 7A). In contrast, storage roots were gen-
erally initiated at the lower nodes (Fig. 7B)
when relatively high air and soil temperatures
prevailed during SR1 and SR2. Such condi-
tions interacted with soil moisture at the 5-cm
depth that approached the presumptive soil
moisture threshold (8% to 10% VWC; Fig. 1)
that did not favor consistent storage root
initiation for the soil type used in the study.
Our results are consistent with past obser-
vations regarding the influence of solar radi-
ation, RH, and air and soil temperature on
sweetpotato growth, development, and storage
root yield. These variables were also used as
the main “driving” variables in process-based
models developed for sweetpotato (Mithra
and Somasundaram, 2008; Somasundaram
and Mithra, 2008). Togari (1950) provided
the necessary anatomical evidence that the
growing environment 20 DAT directly influ-
enced cambium activity, which in turn influ-
enced the subsequent development of storage
roots. Kays (1985) reviewed the influence of

Fig. 7. Representative storage roots that were sampled at harvest from plots maintained near 50% of field
capacity at 15-cm depth in Chase, LA. Samples from A were transplanted on 26 May 2009. Samples

[Tt}

from B were transplanted on 15 June 2009. The hill marked “x” in A shows an ‘O’Henry’ guard plant.
Agroclimatic and management variables are described in “Materials and Methods.”
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environmental factors on sweetpotato yield
and indicated that photosynthesis of individual
leaves saturated at approximately one-third of
full sunlight. Quality of radiant energy has not
been well studied in sweetpotatoes attributable
in part to the limited degree of influence over it
(Kays, 1985). Eguchi et al. (1998) experimen-
tally demonstrated that storage roots attained
maximum growth at 70% RH versus 50% and
90% RH when air temperature was maintained
at 27 °C. Eguchi et al. (1994) also experimen-
tally demonstrated a curvilinear response of
storage root weight to sink (soil) temperature
with 23 to 26 °C being the optimal range when
air temperature (27 °C) and RH (70%) were
constant.

The previous example of the potential use
of BXNET represents the use of a BBN in
a limited predictive mode. A BBN can also be
used in diagnostic or inference mode. For
example, if in future validation work BXNET
predicts USTYIELD = HIGH when in fact it
is LOW (i.e., a “false-positive”), then the
possible causes of the unexpected suboptimal
yield can be systematically investigated. If
agroclimatic variables, transplant quality,
soil moisture, soil fertility, crop nutrition,
poor plant stand, harvest date, and weed and
disease effects can be ruled out, then other
possible causes can be considered. Examina-
tion of the yield outcome will also help in
providing clues. If the poor yield is the result
of the reduced proportion of storage roots
relative to lignified or “stringy” roots across
all underground nodes, then an accidental or
an unplanned intervention event at SR1 or
SR2 cannot be ruled out. Recent research
data have implicated that sucrose and cyto-
kinin (Eguchi and Yoshida, 2008; Tanaka
et al., 2008) are necessary for storage root
initiation. The major active endogenous cy-
tokinin in storage roots has been identified as
transzeatin (Tanaka et al., 2008). Eguchi and
Yoshida (2008) experimentally demonstrated
that although cytokinin was present in ad-
ventitious roots, storage root initiation only
occurred when sucrose concentration was
increased. These data suggest that transplants
need to be fully established (SR1) and un-
dergo initial canopy growth (SR2) before
storage root initiation. Thus, it appears that
any physical or biochemical variable that in-
terferes with sucrose and cytokinin metabolism
during SR1 and SR2 will lead to inconsistent
storage root initiation, thereby influencing the
final yield at a given harvest date. For example,
partial root zone drying reduced zeatin and
zeatin riboside in roots, shoot tips, and buds by
60%, 50%, and 70%, respectively, in grape-
vines (Vitis vinifera) (Stoll et al., 2000). Qiu
et al. (2004) also demonstrated that chemical
inputs such as pesticides altered zeatin riboside
content in rice roots. Such information and
further understanding of the molecular basis of
storage root initiation will further assist in
planning research studies that attempt to fur-
ther identify the likely causes of unexpected or
unexplained storage root variability or sub-
optimal yield at harvest.

The explicit recognition of the relation-
ship between causal variables and the origin
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and early development of storage roots (phe-
nology) underpinned the development of
BxNET. These presumptive phenological
stages have been locally validated and cali-
brated for the Beauregard cultivar. The pro-
totype model is relatively simple, i.c., few
total parameters, represents a limited range
of agroclimatic conditions, and applies only
to the specific management practices. This is
consistent with the commonly held belief
that the extrapolation potential of empirical
models is considerably less than process
models (Jame and Cutforth, 1996). As a
beta-level model, BXNET needs to be further
tested, calibrated, validated, and updated.
Marcot et al. (2006) described two methods
of updating BBN models with “case files,”
i.e., newly collected data: 1) using test results
to calibrate model states to better align with
the data; and 2) using case data to automat-
ically update the CPTs. Further testing and
validation should also be performed to de-
termine model performance with different
locations, planting densities, cultivars, and
irrigation methods. BXNET can also serve as
a foundation model for representing causal
relationships of other variables such as var-
ious soil moisture regimes, weeds, disease,
insects, and chemical injury. For example,
there is a need to document yield response to
prolonged soil moisture deficit (presumably
below 8% to 10% VWC at 5- and 15-cm
depths) and saturated conditions (presumably
above 20% VWC at 5- and 15-cm depths) at
SR1, SR2, SR3, and later growth stages.
Togari (1950) documented the effects of
marginal soil moisture 20 DAT and observed
that “dryness and compactness of soil” in-
creased cambium activity but led to increased
lignification resulting in the formation of
pencil-like storage roots. On the other hand,
“shortage of O,” led to decreased cambium
activity and increased lignification, rendering
adventitious roots prone to become non-
storage roots (Togari, 1950). The expansion
of BXNET to include other variables such as
soil moisture can be accomplished by using
the modular approach described by Kristensen
and Rasmussen (2002). The current agrocli-
matic predictor variables can be grouped into
a submodule. Subsequently, submodules rep-
resenting soil moisture, fertility regimes, weed
presence, disease incidence, etc., can be added
as these become available. As the prototype
BBN model is further developed and ex-
panded, it can be converted into a decision
network through the addition of decision and
utility nodes. Utility nodes explicitly define
values, e.g., net profit, associated with specific
decision states. This capability represents an
important characteristic of the BBN modeling
paradigm: its ability to integrate agroclimatic,
management, biological, and economic-
themed variables into a comprehensive, sys-
temwide model.

Crop growth models are important com-
ponents of agriculture-related decision sup-
port systems (Park et al., 2005). Using
BxNET to represent the likelihood of an
outcome given certain scenarios helps to
demonstrate the usefulness of BBNs in nat-

1176

ural resource management, i.e., depiction of
the influence of alternative management in-
terventions (e.g., altering harvest date) on
key predictor variables, thereby enabling the
manager to choose the best course of action
(McCann et al., 2006). BBNs are not without
drawbacks. One of the main disadvantages of
using BBNs is the need to discretize contin-
uous variables. Discretization could lead to
lower precision (McCann et al., 2006). On the
other hand, we gain the ability to use the
efficient reasoning machinery of BBNSs, es-
pecially if the relationships among variables
are non-linear and complex (Myllymaki et al.,
2002). Our data-driven approach of BBN
development used a combination of findings
from previous research and recent empirical
data in helping to delimit the extent of data
collection and variable selection. In the con-
text of representing the response of a complex
biological system, we believe that it was
important to precisely define and confirm the
onset of storage root initiation and to adopt
a phenology-based modeling framework. Our
results further corroborate Togari’s (1950)
findings that agroclimatic and management
variables within the first 20 DAT directly
influenced the rate of storage root initiation
and eventual yield. We are able to make this
comparison because of a common phenolog-
ical timeframe. This approach helps to ensure
that future calibration and validation work on
the prototype model will be based on a com-
mon frame of reference.

BxNET and the accompanying modeling
data set are available on request from the
authors. A trial version of Netica can be
downloaded from the vendor’s web site. The
software is needed to run and interact with
BXNET.

Conclusion

We described the development of
BxNET, a prototype or beta-level BBN
model that represented the relationship be-
tween US1YIELD and agroclimatic variables
extant during the critical storage root initia-
tion stages. Environmental variability during
the critical storage root initiation phase influ-
enced storage root count and final storage
root yield was a function of time, assuming
other variables were uniform. The model was
developed assuming the absence of influence
from weeds, disease, insect pests, and chem-
ical injury. BBN development was performed
in two basic steps. First, current knowledge
regarding the presumptive relationship be-
tween agroclimatic variables and storage root
initiation was used to develop candidate
alpha-level BBN structures. These candidate
models were subsequently parameterized on
a training data set and a beta-level model was
identified using a search and score approach.
Model error rates were estimated using a
combination of cross-validation (leave-one-
out), validation on an independent data set,
and AUC analysis. As an empirically derived
model, BXNET is applicable only to the
location defined in the study. As a beta-level
model, BXxXNET needs to undergo further

testing, calibration, validation, and updating.
Site-specific calibration and validation will
allow BxXNET to be adopted for use in other
locations or growing environments. The
model can be used as a foundation for in-
vestigating the influence of other variables
such as weed presence, disease incidence,
and other yield-limiting factors. It can also
be used as a basis for the development of
a model-based decision support system to
further increase efficiency in sweetpotato
production.
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