
CELSS. The technology to grow plants, microorganisms, and pos- 6. 
sibly animals in a space environment is in a primitive state compared 
with the need. However, scientific and technical progress in doc- 7* 
umenting plant characteristics and productivity can help overcome 
some of the current facility constraints. Visualizing future space g 
farms supporting human populations in orbit and on moons and 
planets is no longer science fiction. The reality lies in determining 
what form the facilities to support CELSS operations will take.

9.
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Challenges to Plant Growing in Space

R.W. Langhans and D.R. Dreesen
Department of Floriculture and Ornamental Horticulture, Cornell University, Ithaca, NY 14853

Picture yourself a million miles from earth; it’s lunch time. What 
will you eat: meat, fish, bread, fresh vegetables (cooked or un­
cooked), or food from a tube? What will happen to the waste prod­
ucts from the processed food or even from yourself? What will you 
breathe? These and hundreds of detailed questions must be an­
swered. At present, we have little knowledge about a totally closed 
environment life support system (CELSS). We have developed in 
this paper a list of references that are pertinent to the problem. It 
is divided into subject areas and listed chronologically, rather than 
alphabetically.

Perhaps we should ask whether food production will be a neces­
sity. Others in this symposium series, specifically D. Olson and J. 
Bredt, have addressed the problem more directly. W. Mendell, in 
his opening address to this International Horticultural Congress, 
mentioned the importance of food production in the space program. 
It appears a colonization of the moon could become a reality. It 
would be a true colony, however, only if food could be produced. 
It would be too expensive to ship food that great a distance for a 
large number of people with current space transportation technol­
ogy. Without food production, it would be an outpost, with people 
there for only short periods of time. Plant growing has the asset of 
the C02, 0 2, and water relationships that are beneficial to man. 
The concepts have been known for a long time. Research support 
from NASA to this point has not been great. The techniques nec­
essary to produce food in space may not be developed rapidly and 
technology may not be transferable from earth to space. Those of 
us who have thought about this problem have worried that when 
CELSS is needed to go into space, it will not be ready. A review 
of the literature will show that space biologists have been working 
on some of the problems of plant growing in space. What has not 
been investigated extensively is what we call cultural problems of 
growing plants. The opportunities are exciting and almost unlimited 
in scope, and the information obtained will, in many instances, be 
applicable to crop production on earth.

The major biological question is whether plants will grow in 
hypogravity. When we say “ grow” , we are referring to horticul­
tural quality. Most of the space experiments have been carried out

in very low irradiance flux, which would not produce quality plants 
on earth, so better results should not be expected in space. There 
are a number of reasons why the irradiance flux has been low in 
these studies, and they generally have to do with basic limitations 
of the space systems. These limitations do not help the results of 
the study, however, especially if one is trying to draw conclusions 
and say “ plants grow in hypogravity” . Another biological question 
is what effect will long- or short-term ionizing radiation levels have 
on the plants? These effects in the short-term, include perhaps plant 
injury, and, in the long-term, the potential of genetic aberrations, 
especially to the propagation materials for the next generation of 
plants.

NASA is building a ground-based demonstrator to study some of 
the problems involved in a large, closed plant-growing system. The 
demonstrator is located at the Kennedy Space Center in Florida, 
under the direction of William Knott.

The immensity of the problem is difficult to comprehend. In a 
limited space and with limited supplies, the plant-growing system 
has to produce a continuous supply of food, regulate the 0 2 and 
C 0 2, and purify water for the inhabitants. On Earth, a person, on 
average, consumes 750 kg of grain from 2.5 ha or 25,000 m2 of 
land per year. Each square meter of land has 1250 m3 of air above 
it that serves as supply, dilution, or buffer. We will describe the 
complexity of the systems, indicate the state of our present knowl­
edge, and propose the challenges to the scientists.
1) Space Biology

A) Radiation—There have been numerous reports that the radia­
tion levels in space are high. The exact levels and kinds of 
radiation are available through NASA literature. The space­
craft was not designed with a radiation shield, so this problem 
is not unexpected. The short- and/or long-term effects on 
plant growth should be investigated. If the radiation levels 
and types are known, they would appear to be relatively easy 
to mimic on earth, including radiation storms. This infor­
mation is necessary, as it can affect the whole scenario of 
cultural planning. For example, it may not be possible to 
propagate plants either vegetatively or sexually because of
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the genetic changes in the next generation.
B) Hypogravity—Some experiments have been performed that 

have not, at least from a horticultural perspective, indicated 
that plants can be grown in hypogravity. We will make the 
assumption, for our discussions, that these problems will be 
solved or they are not real problems.

2) Plant Growing
NASA, and specifically CELSS, has determined that a balanced 

human diet, which includes all the essential elements, carbohy­
drates, oils, amino acids, etc., can be achieved with eight species 
of plants (vitamins can be supplemented), including wheat, rice, 
white potato, sweet potato, soy bean, peanut, lettuce, and sugar 
beet. This species selection can be researched further. Although a 
great deal is known about human nutrition, it appears that there are 
very few controlled examples of humans living for extended periods 
on a purely vegetable diet, and no studies to show they can live on 
these eight selected species. It will be necessary to know the quan­
tity of the eight species required in the diet in order to determine 
the growth area needed. We will not discuss the arguments for using 
animal proteins, but there have been some thoughts of obtaining 
them from fish or insects.

Three major points are needed to understand the growth of these 
eight crops, and they are area required for growth, cultural require­
ments, and cultural selection.

A) Area required for growth—Frank Salisbury discusses this 
subject in greater detail. We just want to put it into perspec­
tive. We need production yields for each of these crops, so 
a total production area can be calculated. At present, the area 
for food production per astronaut is really very suspect. It 
has been calculated on a dry-weight basis and extrapolated, 
sometimes from field data. As horticulturists, we know there 
can be an appreciable difference between calculated and 
achieved, especially for small plots, with many outside rows, 
in rooms with walls.

B) Cultural requirements—It will be necessary to develop crop 
models for each of the eight crops. It will not be correct to 
find just the optimum for production or dry weight. At this 
time, we do not know the driving force or the limitations of 
the system. If, for example, electric power is limited, then 
irradiance flux will be limited, and all other factors will have 
to be optimized to that irradiance level. It could be possible 
that gas exchange and storage of C02 and 0 2 are very critical 
to the overall spacecraft system; then, the regulation of pho­
tosynthesis and respiration rates would be the driving force. 
Listening to spacecraft design engineers, we would suspect 
irradiance will be the limiting factor. Similar to our growth 
chambers, the higher the irradiance, the more cooling that 
must be engineered into the system, and both require in­
creased energy consumption and reduce the efficiency of the 
system.

It will be necessary for various horticulturists to become 
expert in growing each species, similar to our expertise for 
horticultural crops on earth. Some have started—Tibbitts with 
white potatoes, a group from Tuskegee Institute with sweet 
potatoes, Salisbury with wheat, and Mitchell with lettuce.

C) Cultivar selection—Once the systems are designed and the 
environmental conditions defined by the horticulturist and the 
engineer, the plant breeders should customize or optimize the 
crop to these special conditions. The objectives include plant 
size, production efficiency, speed of growth, resistance to 
radiation, etc.

3) Physical Systems
The plant-growing systems will have to be a cooperative design 

effort between the horticulturist and the engineer. First, the horti­
culturist must have sufficient information available to answer the 
design questions of the engineer, such as optimum irradiance, tem­
perature, C02, and humidity levels. We should not use the same 
procedures most of us use when we ask for specifications for growth 
chambers (i.e., ask for wide ranges of environmental conditions 
with minimum variations and then proceed to use a single setting 
for the life of the chamber).

A) Light—Irradiance will be most important and probably the

limiting factor. It generally is on earth, especially in growth 
chambers. It will be expensive in energy consumption terms 
to have an unlimited amount of irradiance.
1) Irradiance—If we had our wish, irradiance flux would be 

very high. This would enable us to increase production 
and give a greater opportunity to control the gases and 
transpiration. If irradiance is the limiting factor, then the 
whole scenario will be limited. It would be useful if we 
knew the effect of increasing irradiance on food produc­
tion (assuming that is the bottom line), then optimum ir­
radiance level vs. energy needs could be determined. We 
do not have this information for the eight selected crops.

2) Irradiance source—Another interesting question is whether 
the irradiance will be from lamps, such as HIDs or fiber 
optics. The fiber optics would seem a good prospect be­
cause it requires no energy, but apparently it has limita­
tions. The engineers have indicated the energy loss through 
fiber optics is great, and the irradiance flux would be low. 
A second problem with fiber optics is that the spacecraft 
would have to be positioned so that the fiber optics face 
toward the sun. This requirement would be a driving force 
for the whole spacecraft and may not be desirable. On the 
lunar surface, it would not be very practical with the 2- 
week night.

B) Temperature—Temperature is a very controllable environ­
mental factor, and crop models should be determined so that 
the regulation of food production, quality, and 0 2-C 0 2 pro­
duction is known for all eight crops. The temperature require­
ment must be known for all stages of growth.

C) Relative humidity—Water management of the entire space 
craft environment may be very critical. Conservation of water 
is important. Water is the heaviest single item taken into 
space. Condensation coils probably will be an important part 
of the water recovery system, and the relative humidity range 
of the environment will have to be known. Large condensa­
tion coils in combination with high irradiance flux in the 
plant-growing units could create a desert-like condition. Con­
versely, it probably will be possible to have any relative hu­
midity desired in the plant-growing units. We need to know 
what relative humidity is optimum for the eight species.

D) Gases—On earth, with its relatively constant ratio of gases 
(oxygen, 0 2, C02, N2, etc.), it is difficult and not very prac­
tical to change the ratio. In the space environment, where 
everything must be added, the gas ratio can be optimized. 
Research has shown that a reduced 0 2 pressure has resulted 
in increased photosynthesis. In a space craft’s plant-growing 
unit, it would be possible to have any pressure desired—a 
real opportunity for creative research. Another problem is the 
mismatches in the rates of production and uptake of 0 2 and 
C02 between the plants and humans. The respiratory quotient 
(RQ) (moles of C02 produced/mole of 0 2 consumed) for 
animals is *0.85 and the assimilatory quotient (AQ), moles 
of C02 consumed/mole of 0 2 produced, for plants is *0.95. 
Thus, a loss of 0.1 vol of 0 2 per cycle, creates a potential 
problem that must be solved.

E) Plant support, maintenance, and harvest systems—As the 
physical system of the space craft becomes known, it will be 
necessary to design the growing area—a great research po­
tential for the agricultural engineer and the horticulturist. Many 
of the crops will have some type of support, not only to 
physically support the plant, but to obtain maximum exposure 
to light. The system will have to allow for maintenance on 
the plants during the growth process. The system will have 
to include harvesting. In most instances, the plants will be 
harvested at one time for efficient use of space. The oppor­
tunities for robotic harvest would appear to be very real, and 
this area should be investigated.

F) Nutrient/water distribution systems—We assumed hypograv­
ity would not be a problem, i.e., would not inhibit plant 
growth. Hypogravity, however, will be a major consideration 
in space plant-growing units. One of the areas of concern is 
that of the water distribution system. In weightlessness, the
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nutrient/water distribution system will be critical. The prob­
lem is difficult to solve. How can water and nutrients be 
moved uniformly from a source to the plant and the excess 
returned to the source. In the one-sixth gravity of the moon, 
the problem should be greatly reduced and earth-designed 
systems should work.

The nutrient requirements of each of the eight species must 
be known. The use of waste water as a nutrient solution could 
be useful and should be investigated. Monitoring systems for 
both the nutrient solutions and the nutrient status of the plants 
must be designed so the distribution system can be comput­
erized.

G) Water recovery systems—It appears plant transpiration can 
serve as an excellent way to purify water. The quality of the 
water used for the nutrient solution could be poor, and yet 
the transpiration water recovered could be potable. The ques­
tions are: how much water can be obtained from a square 
meter of plants? what are the relationships of transpiration to 
irradiance flux and temperature? and how do they affect food 
production or gas exchange?

H) Toxic management systems—There has not been a great deal 
of research on the production of toxic materials in a closed 
system. In the closed systems I have seen, no toxic materials 
were observed. It is true these systems have not been closed 
for very long periods of time (4 weeks). We assume that, 
after months of use, the nutrient system would contain foreign 
materials toxic to plants (yet to be determined). The same 
would be true of the air. Why materials like ethylene would 
not accumulate, we do not know. The problem appears to be, 
first to find if toxic materials are present and then find filters 
or other ways to remove them.

4) Food
A) Efficiency of food production—Food probably will be the 

driving force in the CELSS program, so maximum food pro­
duction will be a major objective. The limiting environmental 
factors (irradiance, C02, temperature) then will determine the 
rate of food production in the limited area. Crop models will 
be needed for each of the eight species. The engineers will 
have to determine how feasible (energy consumption) it will 
be to increase any limiting factor and compare that to the 
value of added food production.

B) Processing of food—Food scientists will have to look at the 
eight selected crop species and determine the best way to 
process these plants to obtain the maximum amount of food. 
The greater the percentage of the plant that can be used, the 
less waste there will be to process. Energy will be limited on 
the spacecraft. Many food processes take a lot of energy, and 
ways to reduce energy consumption will be necessary.

C) Quality of food—One of the reasons this work should be done 
by horticulturists is that we recognize plant quality; many of 
our colleagues in plant physiology, botany, etc., do not have 
this expertise. The astronauts will have to live with this food 
production system for a long time, so it should be palatable. 
NASA has a program to study the feasibility of growing algae 
and can make a number of arguments for the production of 
algae. It is easy to grow and is very productive, doubling 
itself every 24 hr. They do have a problem selling it to the 
astronauts who have to eat the algae three times a day, or to 
the food nutritionists who must supply a complete balanced 
diet.
1) Essential elements, carbohydrates, amino acids, etc.—The 

food scientists should confirm that the diet of the space 
traveler contains the essential materials for human con­
sumption and health.

2) Palatability—This is an important factor and should not 
be ignored. If the space traveler is to be in space for a 
few days, anything that will keep him or her alive is ac­
ceptable, but when the discussion is of lunar colonization, 
then the lunites should look forward to their meals. There 
are some interesting opportunities for the food scientist 
with the eight crops selected to supply a balanced and 
interesting diet.

3) Storage—The whole scenario of how the food chain will 
develop has not been determined, but we would suspect 
that storage of food will be important. At this time, it is 
not known whether the food will be grown on a continuous 
basis or cropped, i.e., one harvest at a time and stored for 
later use. Again, I would assume it will be a combination 
of both, just as it is here on earth.

5) Miscellaneous Systems
A) Toxic materials—As we indicated before, we assume there 

will be some toxic materials produced in this closed environ­
ment, if not by the plants, then by the humans or the waste 
or the food processing.
1) Air—It would appear that a filtering system of some type 

will have to be incorporated into the unit. Studies should 
be made to determine what materials are present. It will 
be difficult because it should be done with all the inter­
related parts together, i.e., food production, humans, and 
waste processing.

2) Liquid—The liquid phase of the growing system will have 
to be filtered and monitored for toxic materials. On earth, 
we can dispose of the nutrient solutions every few weeks 
or allow enough leakage to dilute any problems. This dis­
posal will not be possible in space.

B) Waste processing—NASA is studying the processing of the 
unused plant material and human waste. It is a very complex 
process; the end product has to be reusable, there are space 
restrictions for the process, and a limited amount of energy.
1) Plant—The selection of the plants is important to reduce 

the amount of waste or unused plant parts. The waste must 
be reduced to a reusable form, most likely to the salt form, 
with no waste or toxic materials as a residue.

2) Human—Human waste, the urine and feces, must be re­
duced to a reusable form.

C) Microbial management—It is impossible to produce a sterile 
situation in space travel, especially if humans are involved. 
A number of studies indicate that some microbial interaction 
is beneficial for both plants and humans. Like the rest of this 
complex program, it is a matter of a controlled balance. There 
are numerous cases of a single microbe species in a sterile 
situation causing major problems. In a balanced population 
of microbes, there is less danger of “ contamination” .
1) Air—In a closed small environment, some understanding 

of microbial populations is necessary. After an under­
standing is obtained, then a scenario can be constructed.

2) Liquid—There is a real danger that a disease could enter 
into the plant-growing system. It is our assumption that 
the plant-growing system will be some form of hydropon­
ics with a central system for nutrient recharging, etc. It is 
easy to imagine a disease organism getting into the system 
and causing damage. A monitoring system to evaluate the 
microbial populations will have to be devised. A redun­
dancy in the whole system will have to be designed to 
avoid a total catastrophe. This redundancy will be nec­
essary for any number of problems, including insect in­
festations, or a mechanical breakdown of the environmental 
or hydroponic system.

We visualize a computerized, robotized, automated plant-grow­
ing unit, with the systems monitored by the human inhabitants of 
the spacecraft. The total system will be too complex for a person 
to control individually, and the limited manpower will probably not 
allow for a trained horticulturist—at least in the first CELSS space 
project.

We hope we have been able to give you some ideas about the 
potential for research in this field. There are literally thousands of 
bits of information that must be integrated into the total system to 
make the whole CELSS work.
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Plant Productivity in Controlled Environments

Frank B. Salisbury and Bruce Bugbee
Plant Science Department,

Utah State University,
Logan, UT 84322-4820

To assess the cost and area/volume requirements of a farm in a 
space station or Lunar or Martian base, a few laboratories in the 
United States, the Soviet Union, France, and Japan are studying 
optimum controlled environments for the production of selected 
crops. Temperature, light, photoperiod, C02, humidity, the root- 
zone environment, and cultivars are the primary factors being ma­
nipulated to increase yields and harvest index. Our best wheat yields 
on a time basis (24 g*m-2*day_1 of edible biomass) are five times 
good field yields and twice the world record. Similar yields have 
been obtained in other laboratories with potatoes and lettuce; soy­
beans are also promising. These figures suggest that «30 m2 under 
continuous production could support an astronaut with sufficient 
protein and about 2800 kcal-day-1. Scientists under Iosif Gitelzon 
in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 
months, producing 80% of their own food. Thirty square meters 
for crops were allotted to each of the two men taking part in the 
experiment.

A  functional controlled-environment life-support system (CELSS) 
will require the refined application of several disciplines: controlled-

Work reported in this paper was supported by NASA-Ames Cooperative 
Agreement no. NCC 2-139 and by the Utah Agricultural Experiment Station. 
This is UAES paper no. 3556.

environment agriculture, food preparation, waste disposal, and con­
trol-systems technology, to list only the broadest categories. It has 
seemed intuitively evident that ways could be found to prepare food, 
regenerate plant nutrients from wastes, and even control and inte­
grate the several subsystems of a CELSS. But could sufficient food 
be produced in the limited areas and with the limited energy that 
might be available? Clearly, detailed studies of food production 
were necessary.

Soviet scientists have been engaged in such studies for more than 
a quarter of a century, and NASA supported a limited effort with 
algae and with higher plants in the early 1960s. NASA-supported 
studies with higher plants were soon terminated, but the research 
was reinitiated in the late 1970s. Recent planning for permanent 
colonies on the moon or Mars and for permanent manned space 
stations has led to an increased conviction within NASA that such 
work is essential (8). Related studies are being done in France and 
in Japan. The discussion here is arbitrarily limited to work with 
higher plants.

In spite of their recognized importance, only a few token studies 
have been supported by NASA so far: our own with wheat, studies 
with potatoes at the Univ. of Wisconsin, lettuce at Purdue Univ., 
soybeans at the Univ. of North Carolina, and some studies with 
algae. During the past 5 years, only about 4 million dollars have 
been allocated to these studies. This seems pitifully small when one
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