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Calcium is known to be a second messenger in many develop­
mental processes in animal systems, but it has only recently become 
evident that Ca is an important intracellular messenger in plants as 
well (9, 15, 22, 32-35, 41). The level of free Ca concentration in 
the cytoplasm is extremely low, and it is influenced by extracellular 
signals such as light, gravity, and hormones. Investigations from 
our laboratory indicated that Ca and its binding protein, calmodulin, 
play an important role in stimulus-response coupling by regulating 
enzyme activities, especially through protein phosphorylation (33, 
34, 48). In vivo and in vitro protein phosphorylation studies have 
revealed Ca-dependent changes in various plant tissues (18, 37-39, 
49, 50). We have also been able to influence various physiological 
processes such as cell elongation, abscission, senescence, and tub- 
erization by altering extracellular and intracellular Ca levels (33). 
Other examples of Ca-mediated processes in plants are as follows: 
a) cell division, b) geotropism, c) protoplasmic streaming, d) sto- 
matal control, e) chloroplast movement, f) secretion, g) hormone- 
dependent changes, h) enzyme activation, and i) protein phosphor­
ylation (9, 33).

Calcium is essential to maintain structural integrity of membranes 
and cell walls (8, 11, 14, 20, 26). In plants, the major portion of 
the Ca is present in the apoplast, primarily complexed with cell 
wall moieties and the plasma membrane. The importance of Ca in 
cell-to-cell adhesion is well recognized (8, 11, 23-25, 30, 44). The 
cementing effect is due primarily to Ca pectate of the middle la­
mella. Calcium is essential for the maintenance of cell wall struc­
ture, especially in fruits and vegetables that are stored for prolonged 
periods (30). Preharvest Ca treatments are effective in improving 
overall quality and overcoming physiological disorders such as bit­
ter pit in apples, blossom end rot in tomatoes, tip burn in lettuce, 
and hollow heart and brown center in potatoes (23, 30). Postharvest 
dipping or vacuum- or pressure-infiltration with a Ca solution also 
is effective in improving storage quality in apples (30, 31).

Extracellular calcium
Concentrations of 1 to 5 iq m  Ca2+ are known to occur in the cell 

wall region. These concentrations are essential to protect the plasma 
membrane and to maintain the structural integrity of the cell wall. 
Calcium is known to delay senescence in apples, resulting in firmer 
fruit (17, 23, 30, 31). During ripening and senescence, dissolution 
of the middle lamella occurs, resulting in cell separation. Calcium- 
treated fruits, which remain very firm during storage, have a densely 
stained middle lamella and increased cell-to-cell adhesion. To study 
the effect of Ca on fruit firmness and on changes in the ultrastructure 
of the cell wall, postharvest Ca infiltration of apples was performed. 
As shown in Fig. 1, Ca protects the middle lamella from normal 
breakdown associated with senescence. In addition to fruit firmness, 
Ca-treated apples possess lower membrane permeability and contain 
more chlorophyll and ascrobic acid than those not treated. Respi­
ratory C02 evolution and ethylene production, which are normally 
high in senescing fruits, are lowered in apples after Ca treatment 
(17, 31). These results suggest that some of the senescence-related 
biochemical processes in apples are delayed by Ca (21, 23, 30).
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The mechanisms involved in these changes are not clearly under­
stood.

Intracellular calcium
The free Ca ion is now considered as a major intracellular reg­

ulator of numerous biological and physiological processes in plants 
(9, 22, 33, 41). Over the past 5 years, a large body of evidence 
has accumulated that enables us to propose a working hypothesis 
for the mode of Ca action. This hypothesis states: a) the free cy­
toplasmic Ca concentration is < 1 |xm and under metabolic control; 
b) the cytoplasmic Ca concentration can be regulated by various 
extra- or intra-cellular signals such as light, gravity, and hormones; 
and c) the cytoplasmic Ca binds to calmodulin, thereby activating 
it. In this activated state, enzymes can bind to the calcium-cal­
modulin complex leading to the response. The major compartments 
of the cell where high levels of Ca could be stored include organelles 
such as endoplasmic reticulum, mitochondria, chloroplasts, and the 
vacuole (Fig. 2).

Intracellular Ca distribution plays a critical role in cell function. 
Excessive amounts of free Ca2+ in the cytoplasm are injurious to 
the cell (9, 33). At high levels, Ca2+ reacts with inorganic phosphate 
to form an insoluble precipitate. Thus, if cytosolic Ca2+ concentra­
tions were allowed to reach the millimolar levels present in the cell 
wall region, phosphate-based energy metabolism would be seriously 
inhibited. Plants have evolved a mechanism for removing excess 
Ca from the cytoplasm and maintaining free Ca2+ concentration in 
the submicromolar range. This mechanism requires active pumping 
of Ca out of the cytoplasm.

In contrast to the intracellular free Ca level, which is submicrom­
olar, the concentration of the closely related divalent cation, Mg2+ 
is in the millimolar range. Despite this high concentration of Mg2+ 
in the cytoplasm, cellular processes often display a greater selec­
tivity for Ca. It is suggested that Ca acts as a second messenger in 
the response of plant tissues to external signals (9, 15, 32-35, 41). 
To understand the precise role of Ca in these processes, one must 
be able to measure accurately changes in free cytoplasmic Ca con­
centration. The discovery of fluorescent Ca indicators such as quin- 
2 and fura-2, have made it possible to monitor free Ca concentra­
tions (45, 47, 51). These materials work very well in animal cells. 
However, in plant cells there are many obstacles to overcome before 
the rapid and transient changes in free Ca2+ can be determined 
accurately. It is believed that a 10-fold increase in messenger con­
centration (Ca) is necessary to alter the state of a target protein such 
as calmodulin.

Calmodulin
Calmodulin is a Ca-modulated protein that has been isolated and 

characterized from a large variety of animal and plant tissues and 
is ubiquitous among eukaryotes (1, 5). The physical and biochem­
ical properties of calmodulins isolated from a variety of sources are 
similar. This similarity suggests a fundamental role for calmodulin 
in mediating Ca-dependent processes in plant as well as in animal 
cells (1, 5, 9, 15, 22, 33, 35, 41). Since the discovery of Ca- and 
calmodulin-dependent enzymes in plants (1, 15, 18, 19, 41, 48), 
there is increasing interest in studying the role of Ca as a cellular 
messenger in plants. Whenever there is a transient increase in the 
cytoplasmic Ca2+ concentration, Ca2+ binds to calmodulin, thereby 
activating it. The calcium-calmodulin complex then binds to the 
enzyme, ultimately leading to the response (Fig. 3).

Calcium-mediated protein phosphorylation
In recent years, major interest has been directed toward post- 

translational modification of proteins (46) by Ca-regulated protein
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Fig. 1. Electron micrographs showing the ultrastructure of cell walls of control and Ca-treated apple fruit. Fruit were infiltrated with CaCl2 solution soon 
after harvest (See ref. 31 for details) and stored for 6 to 8 months. Left: Cell wall of a control fruit showing the dissolution of middle lamella (arrow). 
Right: Cell wall of a Ca-treated fruit showing intact, darkly stained middle lamella (arrow) (G.M. Glenn and B.W.P., unpublished data).

Fig. 2. Major Ca stores in the plant cell. Endoplasmic reticulum (ER), 
mitochondria (M), vacuole (V), chloroplasts (CHL). The cell wall (CW), 
which protects the plant cell, also contains high amounts of Ca2+ (25).

phosphorylation in plants and animals (6, 37, 48-50). The role of 
protein kinases in phosphorylation and phosphatases in dephos­
phorylation has been demonstrated in both plants and animals (6, 
33). Reversible protein phosphorylation offers a unique advantage

in cellular regulation, since an enzyme activated after phosphory­
lation by a protein kinase can be inactivated as a result of dephos­
phorylation by a phosphatase. When intracellular Ca concentration 
increases in response to an external stimulus, Ca- and calmodulin- 
dependent protein kinases are activated, resulting in protein phos­
phorylation. Extracts from various plant tissues have demonstrated 
Ca- and calmodulin-dependent phosphorylation of proteins (1, 18, 
19, 35, 38, 48, 50). An example of Ca-dependent phosporylation 
in oat coleoptiles at micromolar levels of free Ca is shown in Fig.
4.

Role of calcium in horm one action in plants

Previous studies by Poovaiah and Leopold (26-29) and Leopold 
et al. (12) have shown that Ca could have strong modifying effects 
on the functions of each of the five known plant hormones, in some 
instances amplifying the hormonal response and in others suppress­
ing it. Recently, the role of Ca in mediating the cytokinin effect 
was studied by first depleting Ca from corn leaf disks by an EGTA 
pretreatment and then transferring the disks to a medium containing 
cytokinin with or without Ca. After the EGTA pretreatment, cy­
tokinin is no longer effective in delaying the loss of protein, a key 
parameter of senescence (Fig. 5). The cytokinin effect is restored, 
however, by the addition of Ca. This effect suggests that the re­
sponse to cytokinin is mediated by Ca. Previous investigations by 
Saunders and Hepler (42) have shown that the Ca ionophore A 
23187 could mimic the effect of cytokinin in the bud formation of 
Funaria. Their results indicate that stimulus-response coupling in­
volves an influx of Ca into the cytoplasm. Calmodulin antagonists 
inhibit auxin-induced elongation in corn and oat coleoptiles, sug­
gesting the involvement of Ca and calmodulin in auxin-induced 
elongation (36). Recent evidence indicates auxin-regulated and cal­
modulin-dependent changes in protein phosphorylation (39), which 
further emphasizes the overall significance of Ca and calmodulin in 
hormonal control in plants. Tuberization in potato has also been 
shown to be influenced by Ca (2).

Abscisic acid (ABA) is known to induce stomatal closure (13). 
Recent studies show a synergistic interaction between Ca2+ and 
ABA in preventing stomatal opening (10). These results are con­
sistent with the hypothesis that ABA increases the permeability of
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Activation of enzymes 
such as Protein Kinase, 
NAD Kinase and ATPase

Response
Fig. 3. Calcium- and calmodulin-dependent regulation in plant cells. In the unstimulated cell, free Ca concentration in the cytoplasm remains low, 

submicromolar range. Following stimulation, the Ca concentration in the cytoplasm increases and Ca binds to calmodulin, making it functional. The 
calcium-calmodulin complex binds to the enzyme, forming the functional calmodulin-Ca-enzyme complex and induction of the response (25).

pree Ca C mM } 0 <1 <1 1 15 40

Fig. 4. Effect of micromolar concentrations of free Ca2+ on in vitro protein 
phosphorylation. All reaction mixtures contained 0.2 mM EGTA and total 
Ca was varied from 0 to 0.25 mM. Free Ca2+ concentrations as determined 
using a Ca2+-sensitive electrode are indicated on the top. Mr values of 
some representative polypeptides and standards are indicated on the sides 
(50).

the guard cell to Ca2+. Calcium then might operate as a second 
messenger to regulate the ionic fluxes that determine guard cell 
turgor.

Role of phosphoinositides in calcium messenger system
In recent years, a great deal of attention has been given to the 

turnover of phosphoinositides in the membrane. A schematic dia-

Fig. 5. Effect of pretreatment of 1 mM EGTA on the protein content of 
corn leaf disks. After pretreatment for 5 hr, leaf disks were transferred 
to 10"8 to 10"6 M cytokinin (BA) with or without 1 mM CaCl2 and 
incubated in the dark for 4 days. Initial value of total protein 120.2 ± 
6.2 (24).
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Phosphatidylinositol 4,5-bisphosphate (PIP2)

Inositol trisphosphate (IP3) Diacylglycerol (DG)

Protein kinase C

Cellular response
Fig. 6. Diagram illustrating the turnover of phosphoinositides, Ca signal pathways, and the induction of cellular response. CaM, calmodulin, ER, 

endoplasmic reticulum (34).

gram illustrating the turnover of phosphoinositides and Ca mobili­
zation leading to cellular response is shown in Fig. 6. As indicated 
in this model, the primary stimuli such as hormones, light, and 
gravity interact with the receptor. This interaction results in the 
activation of phospholipase C and the cleavage of the membrane 
lipid phosphatidylinositol-4,5-bisphosphate into diacylglycerol and 
inositol trisphosphate (3, 33, 34). Inositol trisphosphate then re­
leases Ca from the endoplasmic reticulum (7, 40). This released Ca 
can activate calmodulin-dependent enzymes, such as protein kin­
ases. Together with diacylglycerol, Ca can also activate protein 
kinase C, ultimately leading to protein phosphorylation and cellular 
response (3, 16, 33, 34). The presence of phosphoinositides has 
been shown in plant tissues (4), and recent evidence suggests that 
some similarities exist in the phosphoinositide pathway in plants 
and animals (33, 34). Inositol trisphosphate-induced Ca mobiliza­
tion from microsomal fraction has been observed in our laboratory 
(40) and elsewhere (7). Protein kinase C has recently been reported 
in plants (43). We also have evidence to show the involvement of 
phosphoinositides in promoting phosphorylation of soluble proteins 
(33). More information is needed to clarify the significance of this 
pathway in plants.

Conclusion
The mechanism of Ca action is just beginning to be understood 

at the molecular level. A  dramatic unfolding of information during 
the past 5 years suggests that Ca is not only a micronutrient, but it 
also has major metabolic and developmental control in plants. A 
detailed understanding of the biochemical processes mediated by 
Ca and calmodulin would help our understanding of various processes 
involved in plant growth and development. Although Ca- and cal­
modulin-mediated biochemical processes as well as the turnover of 
phosphoinositides have been well-studied in animal systems, such

studies are in their infancy in plants. However, the regulation of 
plant growth processes by Ca points to a second messenger role for 
Ca similar to that already known for animal systems. What is lack­
ing in plant research is information at the molecular level on how 
Ca transport from membranes, organelles, and the cell wall is con­
trolled and what are the initial events that trigger the biochemical 
processes that depend on changes in cytoplasmic Ca concentration. 
We need to perfect techniques for precisely measuring transient 
changes in free cytoplasmic Ca levels. Accumulating evidence sug­
gests a major role for Ca in cell function and signal transduction in 
plants.
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Intracellular Calcium Dynamics, Cell Development, and Stress
Tolerance

Vito S. Polito
Department of Pomology, University of California, Davis, CA 95616

Abstract. Intracellular Ca2+ and regulation of cell Ca2+ play important roles in cell development and in the maintenance and modulation 
of various cell functions. This report will describe research on the role of membrane and free cytoplasmic Ca2+ in cell development and 
stress tolerance. Results to be presented include microscopic fluorometric data obtained using fluorescent probes for Ca2+ and cytoskeletal 
proteins within individual cells to investigate the role of CA2+ in membrane organization, establishment of cell polarity, and maintenance 
of cytoplasmic streaming under stress conditions.
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