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Two characteristics o f perennials which distinguish them from an­
nuals are that they live longer and tend to be larger. It turns out that 
much o f what needs to be said about experimentation with perennials 
follows from these 2 trivial observations and their consequences.

The fact that perennials live longer than annuals has many implica­
tions which must be faced in experimental design and later analysis. 
First, there is more time for all sorts o f mishaps and calamities to 
occur, meaning that unbalanced data are to be expected. Second, the 
experimental objectives may shift over time; indeed, the experiment 
may outlast the experimenter, and with new personnel may come new 
interests. Third, we may want to provide for the possibility that, when 
the current experiment ends, the same plants might be carried over 
into another experiment. And fourth, we are likely to have data from 
several seasons on the same plants.

That perennials are likely to be larger than annuals also has impor­
tant implications. Single-plant and several-plant plots will be com­
mon; the individual plant’ s data (versus the aggregate response from 
many plants in the plot) will be o f greater interest, and plant-to-plant 
variability will be a more important source o f variability with peren­
nials.

This paper focuses on issues which are especially pertinent in ex­
perimentation with perennials. The emphasis is on field experimenta­
tion with large perennials (e.g., tree crops), since the differences be­
tween perennials and annuals are most clear-cut and important in 
these applications. O f course, many o f the basic principles o f experi­
mental design discussed by other contributors to this symposium, al­
though not repeated in this paper, apply to studies on perennials as 
well as annuals.

Although standard literature citations appear in the following dis­
cussion, I must emphasize the contributions o f S. C. Pearce to this en­
tire area; his work has shaped much o f my own thinking. Reference 
(7) is especially useful, but unfortunately not readily available 
through libraries in this country.

Experimental designs for controlling environmental variation

A  central issue in experimental design is the desire to reduce error 
variance by partitioning out extraneous variability, i.e., by account­
ing for known or suspected sources o f variability other than treatment 
effects. By doing so we hope to increase the power o f tests o f signifi­
cance, sharpening our ability to recognize treatment differences 
where they exist, and to improve our estimates o f treatment means 
and o f the differences between treatment means, reducing standard 
errors and shortening confidence intervals.

Traditionally, in designing field experiments, we have sought to 
account for environmental variability by incorporating some form o f 
blocking into the experimental design. Such designs should still be 
considered when dealing with perennials, but they probably will be 
less effective than with annuals; with perennials, plots are likely to 
contain only one or a few plants, so plot-to-plot variability is less due 
to environment, more associated with plant-to-plant variability. 
However, we would expect the effects o f environmental differences 
to be magnified over time, so the value o f blocking in experiments on 
perennials should be greater for long-term experiments.

In selecting an experimental design, one should prefer a design 
which will be workable when the anticipated losses occur and unbal­
anced data result, and which offers some degree o f flexibility when
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experimental objectives shift or we wish to carry the plants o f this ex­
periment into some subsequent one. Fairly simple designs are prefer­
able. Complex designs (e.g., confounded or incomplete block de­
signs) require a utopian view o f field experimentation; adopting one 
invites trouble! The reduction in error variance one hopes to realize is 
not worth the risk that part o f the anticipated data will be missing. (W e 
refer to data which are missing through mishap or misfortune, not as a 
treatment effect.) Unbalanced data can make a simple design com­
plex; a complex design may become a nightmare, and the problems 
will be interpretational as well as computational. Besides, since with 
perennials much o f the variability is due to the plants themselves, not 
the environment, the gains in precision will probably be less than im­
agined. Furthermore, complex designs offer little flexibility for mod­
ification or conversion. The following are some brief comments on 
fairly simple designs which have potential for field experiments with 
perennials.

Completely random design. The completely random design (or 1- 
way classification) is worth considering for small experiments. Error 
degrees o f freedom are maximized and, since the experiment can be 
contained within a relatively small area, blocking is usually less im­
portant than for experiments spread over large areas. Unbalanced data 
cause minimal disturbance.

Randomized complete block design. This is the most commonly- 
used design with perennials as with annuals. As Rigney (12) ob­
served, . . intimate contact with several hundred analyses involv­
ing almost every conceivable type o f design leaves one with an almost 
reverent attitude toward a simple randomized block design. 
. . . considerable thought should be given to the problem before 

using a layout which cannot be alternatively analyzed as a ran­
domized block.”  With the randomized complete block design, 
blocks and treatments are orthogonal, and one will still have a ran­
domized complete block design if entire blocks or treatments are lost 
or deleted, as might occur if  a block is flooded badly or a treatment 
fails utterly. Missing plots are fairly easy to handle.

Blocks can be at different locations to broaden the inferences which 
can be drawn from the data, as suggested by Monroe and Mason (4). 
One can also form blocks o f a convenient size to serve as work units in 
the carrying out o f the experiment, rather than solely to account for 
environmental variation; an entire block then can be sprayed on the 
same day, harvested on the same day, and so forth. This important use 
o f blocking is frequently overlooked.

It is often possible to superimpose new treatments on old treat-

Table 1. Example o f a design obtained by superimposing new treatments over old treat­
ments which had been arranged in a randomized complete block design.

Block
1 2 3 4

A Aa Ab Ac Ad
Old B Bd Ba Bb Be

treatment C Cc Cd Ca Cb
D Db Dc Dd Da

Capital letters specify old treatments; 
small letters specify new treatments.

Source o f variation Degrees o f freedom

Total 15
Blocks 3
Old treatments 3
New treatments 3
Residual 6
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ments which were arranged according to a randomized complete 
block design— provided the original design is sufficiently intact. The 
details o f how this might be done depend on the numbers o f blocks 
and old treatments from the randomized complete block design, and 
on the number o f new treatments. Table 1 presents a tiny example to 
illustrate one simple possibility. The old treatments would, o f course, 
have been randomized within each block. In Table 1, the new treat­
ments are superimposed on the old with the restrictions o f a Latin 
square, i.e., each new treatment is assigned once to each old treat­
ment ( “ row”  o f the Latin square) and once in each block ( “ column”  
o f the Latin square). The sources o f variation and degrees o f freedom 
are as in a standard Latin square analysis, where old treatments and 
blocks are the familiar “ rows”  and “ columns,”  respectively. Use o f 
the residual as “ error”  assumes that interactions are negligible. The 
example shown is an orthogonal design; orthogonality would be pre­
served if  this example were enlarged to include 8, 12, 16, or any 
number o f blocks which was a multiple o f four, the number o f new 
treatments. I f  Block 4 were deleted in the example given, the result 
would be a Youden square with new treatments orthogonal to blocks 
and in a balanced incomplete block design with respect to old treat­
ments.

As is well known, if the number o f treatments is large, the block 
size o f a randomized complete block design may become too large to 
account effectively for environmental variation; the environmental 
variability within a block becomes too great and the value o f blocking 
is reduced.

Latin square design. The Latin square is often said to be o f limited 
usefulness because the numbers o f rows, columns, treatments, and 
replications o f each treatment must be equal, and small Latin squares 
provide too few degrees o f freedom for error, while large ones may 
give more replication than desired and have rows and columns which 
become too long to account well for environmental variability.

However, when the number o f treatments is small, one might con­
sider using several Latin squares and analyzing them together, 
thereby increasing the error degrees o f freedom and overcoming the 
objection noted above. I f  the Latin squares are “ tied,”  i.e., placed 
side-by-side so that they share common rows (or columns), then even 
more degrees o f freedom can be obtained for error.

Latin squares can suffer some loss o f data without too much resul­
tant difficulty. Also, new treatments can readily be superimposed on 
old treatments, provided there are equal numbers o f new and old treat­
ments, and interactions are negligible. The assignment is handled 
analogously to what was done in the example o f the randomized com­
plete block design (Table 1). Now each new treatment must appear 
once in each row, once in each column, and once with each old treat­
ment. The resulting design is known as a Graeco-Latin square. Table 
2 illustrates the conversion o f a 5 x  5 Latin square to a Graeco-Latin 
square. Not all Latin squares permit this conversion, so, in planning 
an experiment, one might for insurance choose a Latin square which 
one knew could be converted later if desired; no 6 x  6 Graeco-Latin 
square exists (2), so selecting a 6 x  6 Latin square initially would pre­
clude later conversion.

Table 2. Example o f obtaining a Graeco-Latin square by superimposing new treatments 
over old treatments which had been arranged in a Latin square.

1
2

Rows 3
4
5

Capital letters specify old treatments; 
small letters specify new treatments.

Source o f variation Degrees o f freedom

Columns
1 2 3 4 5

Aa Bb Cc Dd Ee
Ed Ae Ba Cb Dc
Db be Ad Be Ca
Ce Da Eb Ac Bd
Be Cd De Ea Ab

Total 24
Rows 4
Columns 4
Old treatments 4
New treatments 4
Residual 8

Split-plot design. Split-plot designs, which by definition involve a 
factorial set o f treatments, are most commonly adopted for conveni­
ence in applying or containing 1 type o f treatment (or factor) in rela­
tively large areas as, e.g., when working with sprays or infections. 
The 1 factor is applied to the large areas (main plots) which are then 
subdivided into smaller units (subplots) to accommodate the levels o f 
the other factor; the second factor is thus run in blocks which are the 
main plots. A  split-plot design is also recommended for cases where 
differential precision is desired; by sacrificing precision on the main 
plot factor, one can gain precision on the subplot factor and on the in­
teraction o f factors.

The split-plot design may also evolve during the course o f an ex­
periment. The plots o f an ongoing experiment, say, a randomized 
complete block design, can sometimes be split to accommodate an 
additional factor, provided the nature o f the plots and the factors in­
volved permit this splitting. This may be useful when, during the 
course o f an experiment, interest develops in a factor not originally 
incorporated into the design, or in the interactions o f this new factor 
with the original factor or factors.

M ore complex designs. I f  a more complex experimental design 
must be used, it is most likely to succeed in a short experiment using 
established plants. The brevity o f the experiment minimizes the 
likelihood o f mishap which could unbalance the data; the use o f estab­
lished plants reduces the risk o f plant loss and, again, unbalanced 
data, and means that environmental effects have operated longer, en­
hancing the prospects that fancy blocking will be worthwhile.

Use o f covariates

Experiments with perennials are usually long, large, and expen­
sive. The plots themselves occupy a great deal o f space, and then even 
more land may be required for guard rows or alleys, external guards, 
and so forth. When comparing varieties or pruning methods, it may 
be enough to allow sufficient space between plants to eliminate com­
petition effects and to permit movement o f equipment; with spray­
ings, infections, or soil treatments, additional guards between plots 
are often necessary to contain treatment effects.

W e need to find ways to reduce standard errors and improve the 
power o f tests o f hypotheses other than through increased replication 
within a standard experimental design. The analysis o f covariance is 
often applicable and effective; the use o f covariates is often worth­
while in addition to, not necessarily instead of, a traditional experi­
mental design.

When the covariate is measured on the experimental plants them­
selves, covariance is sometimes referred to as “ calibration.”  Calib­
ration has been used successfully on a wide variety o f perennials. 
Loosely speaking, calibration compares the performance under treat­
ment with what might have been expected in the absence o f treatment. 
It works best on single-plant plots, as one would expect. For “ crop”  
as the dependent variable o f interest, useful covariates or calibrators

Table 3. Some applications o f calibration (covariance) 
where yield or crop is the dependent variable.

Crop Preferred covariates Reference

Apples Previous 2-year crop (5)
Apples Trunk circumference or cross- 

sectional area
(8)

Apples Trunk measurements after 
periods o f good growth, poor 
crop; previous crop after periods 
o f high yield

(9)

Apples Trunk cross-sectional area (17)
Apples Trunk circumference (19)
Apples Previous crop (20)
Apricots T  runk circumference (11)
Blueberries Number o f shoots (13)
Cocoa Previous crop (18)
Cocoa Previous 2-year crop (3)
Coffee Stem diameter (1)
Grapes Visual ratings o f vines (13)
Oranges Previous crop (6)
Pears Previous crop and trunk 

circumference
(9)

Pecans Previous crop (14)
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have been: crop in the previous year or years, trunk diameter or cir­
cumference, number o f shoots (for blueberries), and visual ratings o f 
vines (for grapes); little is known about the usefulness o f calibration 
for dependent variables other than crop (or yield). Table 3 summa­
rizes some o f the literature on application o f calibration.

The use o f calibration often reduces error variance by 25-50% (5, 
8 ,9 ). Calibration is likely to be most successful when the covariates 
are measurements on established plants which have not been under 
different treatments recently. However, calibration can partially ac­
count for residual effects o f past treatments, as well as for genetic or 
environmental differences. Calibration cannot be used when the treat­
ments are inherent from the start (e .g ., varieties) or are initiated early 
(e.g., graftings or pruning methods).

Analysis o f covariance can be useful in ways other than calibration 
—  for example, employing covariates which characterize plot differ­
ences (soil type, available nutrients). One can also attempt to account 
for environmental effects by covariance adjustment based on mea­
surements from neighboring plots (10); for each plot in the experi­
ment, calculate the difference between the response in that plot and its 
treatment mean, and then use as the covariate for each plot the aver­
age o f these differences from some number o f surrounding plots. 
Clearly, the neighboring plots must be nearby, suggesting that this 
approach is most likely to be useful in the absence o f guards, unless 
the guards themselves provide the covariate.

If one were laying out an orchard, perhaps for future unspecified 
use, a checkerboard o f control and experimental plots might merit 
consideration (N. Scott Urquhart, personal communication). Analy­
sis o f covariance would follow naturally. The checkerboard orchard 
might be especially appropriate when the nature o f the treatments 
(e.g., varieties, graftings) precluded use o f calibration.

One is not limited to the use o f a single covariate or calibrator. 
Similarly, covariates can be transformed to improve linearity. A l­
though there are exceptions, as a rule one should avoid covariates 
which themselves are affected by the treatments.

Data collected over years on the same plants

With perennials, the typical data are from a single experiment con­
ducted over years, and are repeated measurements on the same plants. 
Several approaches to the data analysis seem possible. One can sim­
ply sum over years for each plant, then analyze the total response 
(total crop, total growth). I f  the total response is the variable o f inter­
est, then this approach may be adequate, but the ability to test for in­
teraction with years is sacrificed.

The total time o f the experiment can be divided into time periods 
for analysis, in which case “ period”  becomes a factor in the treat­
ment set, providing a final split o f the submost plots. The dependent 
variable would be, say, the yield within each period, and the analysis 
would be as a split-plot design. The periods used should be chosen 
with some thought. For example, many perennials are biennial crop­
pers; for them, defining 2-year (or at least even-year) periods might 
be appropriate, whereas 1-year periods would probably lead to heter­
ogeneous errors. Summing over more than one year generally has a 
beneficial smoothing effect, since most crop yields fluctuate from 
year to year.

Other approaches to the data analysis also have been tried or 
suggested. Stevens (16) has successfully analyzed total crop and then 
differences between periods. Finally, Steel (15) has proposed a multi­
variate analysis, taking each period’ s data as a separate variate; I am 
unaware o f any application where this approach has proven effective, 
but I doubt that it has been attempted often, since I have detected little 
enthusiasm among horticulturists for multivariate analyses.

Summary

Since perennials, by definition, live longer than annuals, and since 
they are likely to be larger, experiments with them face special prob­

lems. The experiments often run for years, so the plants are at risk 
longer, increasing the likelihood o f mishap and thus unbalanced data. 
Whimsical (some would say malevolent) “ Mother Nature”  has 
greater opportunity to flood plots and blow down trees. A  careless 
worker has more chance to mangle a plant with a tractor, or apply a 
treatment to the wrong plot. The experimental design must be able to 
tolerate the inevitable missing data.

Experimental objectives may change over time, requiring modifi­
cation o f the original study plan. And, at the conclusion o f one experi­
ment, we may wish to carry over the same plants into a new trial. We 
therefore favor experimental designs which are flexible. Simple ex­
perimental designs meet our requirements best; complex designs are 
inflexible and are seriously undermined by missing data in both com­
putation and interpretation.

Experiments with large perennials will probably use single-plant or 
several-plant plots. Proportionally, plot-to-plot variability will be 
less due to environmental effects and more due to plant-to-plant varia­
bility than with annuals. Although use o f traditional simple experi­
mental designs seems appropriate, reducing error variance solely by 
accounting for positional effects through blocking probably will be 
less successful with perennials than with annuals.

Attempting to reduce error variance by merely increasing replica­
tion within a standard design may not be satisfactory. The analysis of 
covariance has proven to be a very effective alternative in many 
cases, often reducing the error variance by 25-50%.

The data will probably include several observations collected over 
time on the same plant. The statistical analysis must take this into ac­
count, and several possible methods are suggested.
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INTERPRETATION AND PRESENTATION OF RESULTS

Thomas M. Little1
Biometrician Emeritus, University o f California, Riverside, CA 92502

The purpose o f an experiment is to answer questions. The truth o f 
this seems so obvious, that it would not be worth emphasizing were it 
not for the fact that the results o f many experiments are interpreted 
and presented with little or no reference to the questions that were 
asked in the first place. In other cases, it appears that the wrong ques­
tions were asked.

Interpretation o f dose and response

Let us look at an example. An experiment was performed in which 
there were 7 treatments consisting o f 7 levels o f a material applied to 
the plants. The simple, straightforward, and useful question that 
might have been asked by the experimenter is: What is the relation be­
tween the amount o f material applied and the plant response? Then 
there is a much more cumbersome and less useful question: O f the 21 
possible pairs o f treatments, which ones are significantly different 
from each other?

Can it be that this second question is really the one the experimenter 
had in mind when the experiment was planned? At any rate, that is the 
question that was answered when the results were reported like this:

Treatment
Level

Plant
Response

0 222 a
1 202 ab
2 205 ab
3 186 be
4 164 cd
5 156cd
6 147 d

Suppose the simpler question o f the relation between dosage and 
response had been asked and answered. It would have been reported 
that there was a highly significant linear relation that accounted for 
over 96% o f the variation in response. This could have been illus­
trated graphically, as in Fig. 1.

Partitioning o f treatment sum o f squares 
in Example 1, Variable 1

Source o f Percent
variation d f SS o f total

Treatments 6 23805
Linear 1 22885 96%
Residual 5 920 4%

The question o f which treatment responses are significantly differ­
ent from each other is now irrelevant, and it need not, in fact, should 
not, have been asked. Once a significant linear trend is established, 
all treatment levels within the range o f those used in the experiment 
are significantly different from one another in their effects. The best 
estimates o f the treatment effects are the points on the regression line.

There are, o f course, other kinds o f relations between dosage and 
response besides simple linear ones, such as various curvilinear rela­
tions.

One o f the variables measured in this same experiment showed a 
response to treatments that was obviously not linear. (Incidentally, 
variables should never be referred to as “ parameters” .) The data 
were presented as follows:

1 Present address: /488 Argyle Lane, Bishop, CA 93514.

Treatment level Response

0 9d
1 12cd
2 15 be
3 22 a
4 19 ab
5 17b
6 l ie d

Interpreting these results by examination o f the letters is even more 
confusing than in the previous example. However, partitioning the 
treatment effects into individual degrees o f freedom shows that over 
85% o f the variability among responses is accounted for by the linear 
and quadratic components. The data can therefore be simply sum­
marized by a simple second-degree curve (Fig. 2).

Partitioning o f treatment sum o f squares 
in Example 1, Variable 2

Source o f Percent
variation df SS o f total

Treatments 6 650.0
Linear 1 71.5 11%
Quadratic 1 482.0 74%
Cubic 1 40.8 6%
Residual 3 55.7 9%

Whenever the treatments consist o f a series o f dosage levels, an ef­
fort should be made to find some meaningful relation between dosage 
and response, rather than resorting to a confusing and almost mean­
ingless multiple comparison procedure.

Factorials

Let us look at another example. This is a 2 x  2 x  2 factorial. In 
other words, there are 3 factors, each applied in 2 different ways with 
all 8 possible combinations applied. This differs from the previous 
example in that no trends are involved. The logical questions to ask 
are: What is the effect o f each factor? Are there interactions, or in 
other words, does the response to one factor depend on the level o f 
another factor?

Fig. I . Linear effect o f 7 dosage rates on plant response.
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It wasn’ t these simple questions that were answered in the presenta­
tion o f the data. Instead, the main question that was answered was: 
Which o f the 28 possible pairs o f treatment responses differed from
each other significantly? Here is the way the data were presented:

Treatment
combination Response

ABC 10.4b
ABc 8.5b
AbC 15.2 ab
Abe 13.0ab
aBC 21.4a
aBc 18.6ab
abC 22.6a
abc 22.7 a

These letters don’t tell us much, but if we partition the treatment 
sum o f squares into main effects and interactions, we find that factor 
A  had a highly significant effect, accounting for over 83% o f the total 
treatment variation. Factor B accounted for another 12%, and there 
was no evidence o f any effect o f factor C or any o f the interactions.

Partitioning o f treatment sum o f squares 
in Example 2

Source o f Percent
variation df SS o f total

Treatments 7 877
Factor A 1 730 83%
Factor B 1 107 12%
Factor C 1 23 3%

A x B 1
A x C 1 1 (
B x C 1 2%
A x B x C 1 5 /

The important facts to present are therefore the main effects o f factor 
A  and B:

Factor Average effect

A 11.8
a. 21.3
B 14.7
b 18.4

Actually, the means o f the main effects were presented in a table, 
but 4 out o f the 6 means were incorrect! Here are the means presented 
alongside the individual treatment means:

Individual Main effects

treatment means Calculated Published

ABC 10.4 A 11.8 11.8
ABc 8.5 a 21.3 21.3
AbC 15.2 
Abc 13.0 B 14.7 17.8
aBC 21.4 b 18.4 15.3
aBc 18.6 
abC 22.6 C 17.4 20.5
abc 22.7 c 15.7 12.6

Unfortunately, mistakes o f this kind are not uncommon in the 
pages o f our journals. What is worse, they are seldom corrected in 
subsequent issues. Published papers are the permanent records o f sci­
entists’ work, and every effort should be made to avoid presenting er­
roneous results. Tables and graphs should agree, and statements in 
the text should be borne out by the presented data.

It is all too easy to blame mistakes on a secretary, a statistical clerk, 
or the computer, but the ultimate responsibility for accuracy belongs 
to the authors. Some experimenters act as though operating a calculat­
ing machine is beneath them, and statistical analysis is a menial task

Fig. 2. Quadratic response o f I variable to dosage level.

that should be relegated entirely to secretaries or clerks. Their work 
often reflects this attitude.

The next example combines both factorial and trend analysis, and 
illustrates how interactions can be interpreted and presented. It is a 2 
x  2 x  4 factorial, with factor C consisting o f 4 exposure times. Obvi­
ous questions would be: What are the effects o f factors A  and B? Is 
there a relation between response and exposure time? Are there any 
significant interactions among the 3 factors?

The question that was actually answered in the presentation o f the 
data was: Within each level o f factor C, which o f the six pairs o f treat­
ments differed from each other significantly? Here are the results:

Level Level Level o f C

o f A o f B 0 1 2 3

1 1 74 c 92 c 108 b 134b
1 2 48 b 108d 156c 292 d
2 1 12a 18a 76a 92 a
2 2 18a 58b 90 ab 162c

A  partitioning o f the 15 degrees o f freedom for treatments tells us
much more about the effects o f the various factors and their interac-
tions.

Partitioning o f treatment sum o f squares
in Example 3

Source o f Percent
variation df SS o f total

Treatments 15 216,083
Factor A 1 44,287 20.5%
Factor B 1 19,927 9.2%
A x B 1 817 0.4%
C linear 1 113,274 52.4%
C quadratic 1 2,977 1.4%
C cubic 1 163 0.1%
A  x C linear 1 1,717 0.8%
B x C linear 1 21,094 9.8%
Residual 7 11,827 5.5%

There were only 4 comparisons that were significant, and these 
accounted for 92% o f the variation among treatments. These were: 
the main effect o f factor A, the main effect o f factor B , the linear trend 
o f factor C, and the interaction between factor B and the linear trend 
o f factor C. These results can be summarized graphically (Fig. 3 and 
4).

This experiment illustrates another important point. The overall F 
value for the treatment sum o f squares based on 15 degrees o f freedom 
is meaningless. This is because it is the average o f 4 highly significant 
single degrees o f freedom and 11 non-significant ones. The idea that 
one should proceed no further with an analysis, once a non-significant 
F-value for treatments is found, has led many experimenters to over­
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look important information in the interpretation o f their data.
Let’ s look at one more example. This example consisted o f 7 treat­

ments. There was a ‘ ‘control”  and 3 levels o f a material in the ratio o f 
2:5:10 applied with and without an additive. It is not my assignment 
to criticize design, but good interpretation starts with good design. 
This was not a very good design. It was not a complete factorial. A  
treatment consisting o f the additive alone would have made it so. Fur­
thermore, there seems to be no logical justification for the particular 
series o f treatment levels chosen. Generally, when studying the rela­
tion between treatment level and response, a series o f rates in arithme­
tic progression is the most efficient.

Here is the way the results were presented:

Treatment Response

0 level 81a
2 level 77 ab
2 level +  additive 74 ab
5 level 67 be
5 level +  additive 66 be

10 level 50 d
10 level +  additive 56 cd

Actually, in spite o f the poor design, the experimenter was lucky 
and didn’ t know it. Partitioning the treatment effects shows that there 
was no evidence whatsoever o f any effect o f the additive, or any inter-
action between additive and level o f material.

Partitioning o f treatment sum o f squares
Example 4, Initial Partitioning

Source o f Percent
variation df SS o f total

Treatments 6 3,216
Control 

vs. others 
Linear among

1 915 28%

others 1 2,249 70%
Additives 1 0 0%
Remainder 3 52 2%

This being the case, we can disregard additives and consider the 7 
treatments as consisting o f 1 treatment at the zero level and 2 treat­
ments each o f 3 other levels. W e can then carry out a regression analy­
sis, and we find that linear regression accounted for over 98% o f the 
variability among treatments. This result can be neatly summarized 
on a graph (Fig. 5).

Partitioning o f treatment sum o f squares 
Example 4, Final Partitioning

Source o f Percent
variation df SS o f total

Treatments 6 3,216
Linear 1 3,164 98%
Deviation 

From linear 5 52 2%

Partitioning o f treatments

In each example I have given, I have mentioned the partitioning o f 
treatment effects as though the technique for doing this were common 
knowledge. Unfortunately, this may not be the case. Over many years 
o f participation in short statistical refresher courses and seminars for 
agricultural research workers, I have made an alarming observation. 
Nearly every participant knew how to calculate LSD, and in recent 
years, Duncan’s multiple range test. Still, less than 10% knew how to 
partition a treatment sum o f squares into meaningful comparisons. 
This is too bad, for the technique is so powerful and yet so simple.

I am glad to note that in the last couple o f years there has been an in­

crease in the use o f this technique reflected in our journals. There may 
be several reasons why it is not more widely used. Although it is des­
cribed in nearly all statistics texts, it is usually under some formidable 
name such as ‘ ‘orthogonal comparisons” , ‘ ‘ orthogonal linear 
forms” , or ‘ ‘ single degrees o f freedom.”  Furthermore, the discus­
sions often tend to be clothed in unnecessarily complex mathematical 
jargon and symbolism.

Let’ s face it, there is probably another reason why the technique is 
not more widely used. People in any profession tend to copy each 
other, and horticulturists are no exception. ‘ ‘Dr. John Doe used Dun­
can’ s multiple range test in presenting his results, so that’ s good 
enough for me.”

I should hasten to add that there are situations where multiple com­
parison procedures, such as Duncan’s multiple range test, are appro­
priate. Such would be the case when testing a random assortment o f 
cultivars or chemicals. Even in these cases, the investigator should 
ask whether the treatments fall into groups, the comparison o f which 
would provide important information. Cultivars, for example, might 
be classified into those which are resistant and those which are sus­
ceptible to a certain disease, and a comparison made between the 2 
groups.

Insignificant digits

For my final comments on the presentation o f data, I am indebted to 
Dr. M. T. Vittum o f Cornell for his suggestions. They deal with false 
accuracy in publishing results. The U.S. Coast and Geodetic Survey 
plaque at the summit o f Mount Whitney is an extreme example. This 
shows the altitude to be 14,496.811 ft .! I was chided by an engineer­
ing dean for ridiculing this claim, because, he said, we biologists just 
didn’ t understand how precisely the engineers could measure things. I

Fig. 4. Linear response to factor C at 2 levels o f factor B. showing interaction.
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Fig. 5. Negative linear response to dosage level, disregarding non-significant treatment 
factor.

agreed. W e biologists-arenot entirely blameless in this matter. While 
we do not generally go to the extremes in the above example, we do 
often pretend that our data are more accurate than they really are. In 
making measurements, more than 3 significant digits are almost 
never justified. Even in reporting means, only in cases where we are 
dealing with material with a very low coefficient o f variability, or a 
very large number o f replicates, are we justified in reporting 4 signifi­
cant digits.

A  common cause o f reporting results with too many significant di­
gits is the conversion o f measurements from English to metric units. 
In -questioning the results o f one paper, I was told that part o f the re­
sults had been given in pounds and part in kilograms, and if I would 
multiply the error mean square by 0.453592372 =

0.2057460381222169, everything would come out all right! In one 
paper, we were told that the rate o f application o f spray was 1402 lit- 
ers/hectare, but the author is at least to be commended for telling us 
that this was 150 gallons/acre. In another paper, it was stated that the 
turf grass was cut to a length o f 0.635 cm. Evidently a mower was 
used which was calibrated in quarter-inch increments.

Even statisticians, who should know better, sometimes exaggerate 
the accuracy o f their statements. For a statistician to tell an experi­
menter that the probability o f obtaining an F value greater than that 
which was observed is 0.068, is inexcusable. Yet this statement was 
made in a recent paper.

Suggestions for improvement

In conclusion, I would make the following suggestions:
1) In planning an experiment, decide definitely what questions 

you want to answer, and design the experiment to answer these ques­
tions.

2) In presenting the results, tell the reader what questions the ex­
periment was designed to answer.

3) Interpret the results as answers to the questions you asked in the 
beginning.

4) Don’ t deceive yourself or the reader with exaggerated claims o f 
accuracy.

5) Strive to avoid mistakes and inconsistencies in the final presen­
tation. I f  you take the credit for the paper, the mistakes are yours too!
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