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Formally, anatomy deals with both the actual and conceptual isola­
tion o f various parts and systems o f an organism for the purpose o f 
describing its parts, their positions, relations, structures, and func­
tions. Although you may associate memorization with anatomy, it re­
ally serves to structure our thinking about an organism. In fact, the 
human mind seems to understand a complex situation or structure by 
first subdividing it into components, then studying each component 
and finally relating the components. Reflect for a minute: we do this 
as teachers, researchers, and students. It seems reasonable, even 
though perhaps not formally correct, to describe the dissection o f a 
study into its parts, their examination, and their relations as the 
anatomy o f a study. I plan for the following anatomy to focus your at­
tention on general structures without particular concern for occa­
sional difficulties and degeneracies.

A research study

A  research study usually seeks to describe how a particular re­
sponse changes with certain related features o f the research setting. 
Studies must be done in the face o f natural variability. I f  you under­
stand some determinants o f this variability, you may minimize its im­
pact by how you structure your research study. This brief introduction 
isolates the 3 essential parts o f a research study: 1) the response, 2) the 
structure to which we want to relate the response, and 3) the structure 
through which we seek to minimize the impact o f extraneous variabil­
ity. I choose to examine each o f these parts under the titles o f the re­
sponse design, the treatment design, and the experimental design. 
The names for these parts will assume a more intuitive meaning as we 
progress.

A RESEARCH STUDY HAS A

• Treatment Design,
• Experimental Design, and
• Response Design

Examples will help communicate the points. We could use bits o f 
published studies, or we could discuss the entire anatomy and illus­
trate it with one grand example. M y teaching experience suggests a 
more understandable alternative: W e will consider an example in 
some detail now, and use it for recurring illustrations.

This example really is a collage o f several studies that I have 
worked with: It is just complex enough to clearly display a study’ s es­
sential parts without becoming bogged down in distracting details. As 
you proceed through its anatomy, consider illustrations from your 
own research. Hopefully you will find them illuminating.

Study's objectives. Water quality is an important matter, particu­
larly in arid regions. Current definitions o f water quality focus princi­
pally on total dissolved solids. Some dissolved solids may be biologi­
cally irrelevant over wide ranges o f concentrations, while small varia­
tions in other dissolved solids may have important biological conse­
quences. Thus, consider comparing the quality o f different water 
sources with a biological assay by comparing growth o f an organism 
grown with water from the different sources.

Study's structure. Suppose chrysanthemums were used as the 
assay organism; they are fairly easy to work with and homogeneous 
cuttings are available commercially. Water was obtained from 24
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sources in sufficient quantities for raising the mums and for as­
sociated chemical analyses on the water from each source. The water 
sources ranged from distilled water to tap water to brackish water to 
water from sulfur springs. The mums were grown in pots (360) in an 
research greenhouse. The pots were placed on 3 benches, 24 groups 
o f 5 pots on each bench. Each water source was randomly allocated to 
a group o f 5 pots on each bench with a separate randomization for 
each bench. We will consider both 1 cutting per pot and 4 per pot. 
Suppose that, after 7 weeks, plant height was evaluated as a biologi­
cally relevant assay variable.

This study’s treatment design revolved around how the water 
sources relate to each other through their chemical composition. A  re­
striction was placed on where the treatments (the water sources) could 
appear in the experimental area. Specifically, each treatment had to 
appear in the same number o f pots on each bench. This tells us that the 
study was conducted in a randomized complete block experimental 
design, an important experimental design, which is familiar to most 
horticultural scientists. The experimental units consisted o f sets o f 5 
pots to which a water source was applied. Each pot represents a re­
sponse unit when the pots contained a single cutting. These latter con­
siderations imply that this study has a simple hierarchical, or nested, 
response design.

I f  instead, each plant’ s height had been obtained weekly, 2520 (7 
x  360) observations would have resulted, and the response design 
would have involved repeated evaluations through time. Or, if there 
had been 5 cuttings per pot, evaluated only once, the response design 
would have been a 2 level hierarchical response design (5 plants per 
pot, 5 pots per treatment).

A general statistical structure
You already have encountered the terms treatment and experimen­

tal unit. As these terms frequently will appear here, you need more 
than an intuitive familiarity with them. Here is a statistical structure 
that gives the needed meaning across a broad range o f situations.

In the example, water sources functioned as treatments and sets o f 
5 pots were the experimental units. On the other hand if the 120 (5 x 
24) pots had been randomly assigned to the 120 positions on the 
bench, then the pots themselves would have been the experimental 
units. More generally, when we set the conditions under which re­
search material will be kept, the conditions usually are the treatments 
and the amount o f material to which we apply a treatment is the ex­
perimental unit. O f course, an experimental unit can consist o f sev­
eral parts, such as several pots in a unit, several plants in a pot, or sev­
eral rows in a field plot with a response coming from each part. A  ful­
ler discussion o f this situation follows when considering the response 
design.

W e may fairly describe experiments as studies in which the inves­
tigator applies treatments to research material, but many research 
studies do not allow the researcher this option. A  researcher cannot 
alter the cultivar o f a lettuce seed, the age o f an existing tree, the type 
o f soil in a plot, the sex or socio-economic status o f students in a class­
room, or the manufacturer or size o f a tractor tire. These are similar to 
our earlier treatments, but the research material determines its treat­
ment status by its characteristics. I f  the researcher cannot apply the 
treatment, then the previously stated concept o f an experimental unit 
does not apply. Our conceptual framework must be expanded to in­
clude these “ characteristic treatments’ ’ because most research stud­
ies with a rich treatment structure somehow involve them.

General structure. A  population consists o f a well-defined set o f 
objects for which inferences are sought, like pots o f chrysan­
themums, apple trees in Indiana, or chili plots in New Mexico. Think 
o f a set o f populations, each population composed o f experimental 
units and one population for each treatment. This requires a broad

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-09-01 via O
pen Access. This is an open access article distributed under the C

C
 BY-N

C
-N

D
license (https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/). https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/



An experimental unit is an object randomly selected from  
the population.

e.g. — A bulb selected from a lot 
or

A plot selected to receive 200 ppm o f a chemical

conception o f a treatment: it essentially consists o f a way to index or 
describe the distinctive features o f the populations we wish to study. 
The index may be a single integer or letter in simple situations; sev­
eral integers or letters in more complex situations; continuous index 
values for regression; or some combinations o f these for covariance. 
So, the treatments describe those features o f the populations to which 
we hope to relate the response and whose importance we hope to 
evaluate through our research study.

W e will use the word treatment as a general term for a variety o f 
distinctive features o f populations; its use neither implies nor requires 
that you treat some o f your material differently from other parts o f it. 
Specifically, treatments could involve strains o f a pathogen, methods 
o f storing apples, kinds o f deer, chickens or pigs, processes o f pas­
teurizing milk, sires in a dairy or beef herd, ways o f vaccinating an 
animal; diets for plants, humans, or animals; human races, sizes o f 
stones, amount o f heat, time, or weight, etc!

Experimental units. This still leaves the idea o f an experimental 
unit somewhat vague. Each population simply consists o f the experi­
mental units. To examine the populations statistically, we must get 
random samples o f experimental units from each population. This 
usually leads us to the definition o f an experimental unit in practice: 
an experimental unit represents the basic element we select from the 
populations. W e may later subdivide it or measure it several times, 
yet its random selection defines it, regardless o f how many pieces o f 
data it yields.

Now we can return to consider the 3 basic parts o f a study. 

Treatment designs
The treatment design specifies the relative structure o f a set o f treat­

ments; specifically, how the treatments relate to each other for pur­
poses o f examining the response. This implies experimental and, in 
turn, statistical questions which should be examined.

The experiment using mums to assess water quality involved 24 
treatments: the water sources. I f  the investigator did nothing more 
than obtain water from 24 sources, he would have an unstructured set 
o f treatments. I f  the water sources had come from 4 localities, then 
comparisons among groups o f treatments would reflect location dif­
ferences. This sort o f structure is called a grouping treatment design. 
Instead, the responses could be related to a particular quantitative 
characteristic(s) o f the water such as total dissolved solids, iron con­
tent, arsenic content, etc. Such treatment structures will be called 
gradient treatment designs and include, as a subset, situations that we 
commonly associate with regression. Finally, the 24 water sources 
could have been a random sample o f all possible water sources in 
some area. This type o f structure is called a random treatment design 
or Model 2 set o f treatments.

Composite treatment designs. The 24 water sources could have 
more structure than simply being different. They could have resulted 
from 4 dilutions (X , 0.75X, 0.50X, 0.25X) o f water originally drawn

TREATMENT DESIGNS

• Identifies relations o f central concern
Specifies how various populations relate to each other 
fo r the purpose o f drawing subject matter conclusions

• Requires definition of treatment populations 
What populations are going to be studied?

from 6 sources. We could naturally arrange the results from such a 
study in a table having 4 rows (for the dilutions) and 6 columns (for 
the water sources). This provides a simple example o f a factoria l 
treatment design. More generally, a factorial set o f treatments results 
from all possible combinations o f 2 or more basic treatments, usually 
called factors. Thus, we can examine the overall effect o f each factor 
using its own treatment design and also study how the factors interact. 
Frequently, the factors’ designs suggest fruitful ways to study this in­
teraction.

Most other composite treatment designs result from either adding 
or discarding treatments from a complete factorial set o f treatments. 
For example, fractional factorials and response surfaces represent 2 
important specialized extensions. A  fractional factorial treatment de­
sign merely contains part o f a regular factorial set. Judicious choice o f 
this part or fraction can yield interpretable results when large numbers 
o f factors and/or large numbers o f levels occur. An unplanned frac­
tional factorial may just happen: consider what happens to a complete 
factorial if it loses a cell (or several) by accident or because no re­
sponse is possible under certain conditions your factorial set produc­
es. Other fractional factorials do exist and have instances o f applica­
tion in a wide variety o f disciplines including the plant, animal, and 
behavioral sciences, but further discussion o f them here would dig­
ress from the anatomy. See Cochran and Cox (3) for details on this 
topic.

Another variation o f a factorial treatment design is a response sur­
face design. They were developed especially to isolate optimum 
operating conditions in industrial situations. They are equally appli-

KINDS OF TREATMENT DESIGNS 

UNSTRUCTURED
• Fixed—cultivars, cultural practices; use multiple
comparisons
• Random—years, locations, genetic lines; use com­

ponents o f variance

STRUCTURED
• Grouping or Nested—fungicides with related chem­
ical or commercial structures
• Gradient or Regression—100, 150, 200ppm
• Factorial—each factor can have any o f the previous 

four structures

cable in any science seeking to isolate optimum substrate conditions 
—  production economics, for example. Thus, they should be appro­
priate for production studies in large commercial greenhouses. See 
Box et al. (1) for a further discussion o f this topic.

Other examples. Each o f these treatment designs has some applica­
tion in almost every discipline. Strains o f biological material provide 
a common sort o f treatment that often is regarded as unstructured. For 
example, you might be interested in cultivars o f onions, breeds o f cat­
tle, species o f field mice, strains o f a pathogen, or races o f wheat rust 
or o f humans, etc. In sociological or behavioral studies, geographic 
locations may have no structure; in learning studies, different textual 
materials provide another example. Gradient treatment designs ap­
pear not only in regression studies, but also in many experiments that 
deal with substrate conditions such as temperature, light intensity, 
day length, water speed (for fish), fertilizer levels (for crops), level o f 
feed consumption or dietary additives (for animals), amount o f pre­
conditioning (with humans), or length o f instruction time (educa­
tion), etc. In each, we seek ways to relate changes in the response o f 
interest to changes in the condition.

Net effect. The treatment design focuses attention on certain com­
parisons among treatments —  comparisons having particular interest 
to the researcher. It represents the “ guts”  o f a research study; the 
other parts exist to support it. The treatment design dominates the im­
portant part o f the statistical analysis. For the purposes o f discussion,

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-09-01 via O
pen Access. This is an open access article distributed under the C

C
 BY-N

C
-N

D
license (https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/). https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/



BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Fig. I . Schematic o f varieties appearing in a greenhouse.

suppose that we are in a situation where the analysis o f variance is ap­
propriate. Then, to examine how the treatment design would influ­
ence the analysis, we must first decide whether we have a treatment 
design involving a random set o f levels o f the treatment or a fixed set. 
Various variance components quantify the impact o f the treatments 
on the experimental material for a treatment design involving a ran­
dom set o f levels.

I f  instead we have a fixed set o f treatments, then various treatment 
means contain the information o f interest. In other words, the treat­
ment means start out as the fundamental parameters, but the treatment 
design suggests various ways in which they should be examined to 
maximize the relation between the analysis and the underlying re­
search concern. Unstructured treatments cannot be examined relative 
to their structure because they have no structure. However, differ­
ences among treatment means can be assessed using multiple com­
parisons [LSD or Duncan’ s procedure; Cramer and Swanson (2)].

A  structured set o f treatments suggests various combinations o f the 
treatment means (jXj) that have a more specific relation to the research 
concern that the simple treatment means have. The treatment sum o f 
squares in the analysis o f variance supports an examination o f the 
overall equality o f underlying |Xj. Otherwise, it contains little infor­
mation about how the |Xj relate to one another through the treatment 
design. The treatment design often suggests that an alternate set o f pa­
rameters,

t
Tli =  . 2  , CijUj,

J = 1
has an explicit meaning, so we should concentrate attention on them. 
These alternate parameters enable us to further break the treatment 
sum o f squares into parts that relate specifically to the treatment de­
sign. The determination o f the coefficients c^ poses the major d iffi­
culty in this process, for once they are determined, associated calcula­
tions are described in most statistics textbooks under a heading such 
as contrasts or individual degrees o f freedom. See for example, Steel 
and Torrie (14, section 11.8). In complex cases, the choice o f the ctj 
may require that you collaborate with a biometrician. See (9, 10, 17) 
for illustrations.

Experimental designs
An experimental design specifies the relation between the treat­

ments and the experimental units. W e can start by considering a ran­
dom sample from each treatment population. Consequently, when 
treatments are applied to experimental units, in contrast to the case 
when the treatments represent a characteristic o f the experimental 
units, such as a cultivar, the allocation o f treatments to experimental

units should be completely at random, unless there are good reasons 
to the contrary, as discussed in the sequel.

For example, if 5 pots each o f 4 cultivars o f tomatoes were ran­
domly assigned to locations on a greenhouse bench, the layout in the 
top part o f Fig. 1 might result. This represents a completely valid ran­
domization, even though all o f cultivar 1 falls on one end and all o f 
cultivar 3 on the other end. However, a horticulturist might well in­
quire, “ Suppose the heat source or the sun location has some effect. 
Couldn’ t this influence the response o f cultivars 1 and 3 differently 
than o f 2 and 4? That’s why I don’t like this randomization. ’ ’

This does not argue against the randomization itself; rather, it says 
that we should take subject matter knowledge into account at the ran­
domization stage. The influence o f known experimental hetero­
geneity, such as thermal gradients, can be minimized by placing 
proper restrictions on the association o f treatments with experimental 
units. In the present example, this would require that we separate the 
bench into 5 ‘ ‘blocks’ ’ o f 4 pots each and restrict the randomization so 
that each cultivar appears once in each block, as shown in the bottom 
part o f Fig. 1.

Recall again the chrysanthemum example concerning water 
sources. In that example, 72 groups o f 5 pots each were placed in an 
experimental area, 24 groups on each o f 3 benches. It has been estab­
lished that plant responses vary somewhat across a greenhouse. I f  the 
location o f experimental material influences the response, then, by 
restricting the location o f various treatments relative to each other, we 
can reduce the bias or misleading effect o f this extraneous variation. 
This mum example closely parallels the preceding tomato example.

Both o f these examples provide an illustration o f an experimental 
design that usually is called a randomized complete block experimen­
tal design. Other common experimental designs are called completely 
random, latin square, split p lo t, balanced incomplete blocks, lat­
tices, and partially balanced incomplete blocks. Rather than describe 
these here, it suffices to note that these experimental designs cover a 
wide spectrum o f research situations, and most o f them are suited for 
use with any treatment design. See Cochran and Cox (3).

Net effect. The experimental design serves to minimize the effect o f 
uninteresting but known sources o f variability in experimental mate­
rial. The experimental design has no effect on the analysis suggested 
by either the treatment design or the response design. It can affect 
how to estimate the treatment means before doing the analysis 
suggested by the treatment design, but it mainly affects methods for 
isolating valid estimates o f residual variance (error).

Responses
Statistical considerations often begin by assuming the availability 

o f a response; however, before launching into a consideration o f 
kinds o f responses or their relation to the experimental units, we 
should reflect on questions like “ what constitutes a response?’ ’ or 
“ . . . a  good response?’ ’ Such questions defy precise answers be­
cause their answer depends heavily upon the area o f investigation, but 
a few general remarks apply to all situations. The response should 
clearly characterize the attributes o f interest in the population o f ex­
perimental units. Specifically, if 2 experimental units differ in the at­
tribute o f interest, then the measured response should have different 
values for them.

Does the planned response really reflect what you want? In produc-

EXPERIMENTAL DESIGNS

• The EXPERIMENTAL DESIGN specifies how the 
treatments relate to the experimental units.

• Treatments should have a completely random associa­
tion with experimental units in the absence o f strong 
reasons to the contrary.

• Good reason: strata or blocks of homogeneous experi­
mental units exist.
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KINDS OF EXPERIMENTAL DESIGN

Popular Experimental Designs

completely random 
randomized complete block 
latin square or latin rectangle 
split plot

Restriction on Randomization 

none
once in each block 
two: rows and columns 
two stages

Covariance may be a good alternative to blocking if a meaningful covariate exists.

tion agriculture, the question o f relevant responses often has a simple 
answer. I f  a grower gets paid on some unit basis, you can use the 
amount o f this unit as the variable. Almost any other interest can lead 
to serious concern about what is the relevant variable. For example, 
how should you “ measure”  disease resistance o f onions, quality o f 
apples, or the impact o f floral arrangements in nursing homes?

Fairly obvious responses emerge in many problems using physical 
responses, but problems occur even here, because most instruments 
detect some consequence o f the concept and translate it into a re­
sponse value, a process that works when certain assumptions apply. 
For example, Wilson (18, p. 45) discusses problems with a voltmeter 
actually producing a voltage reading. Recent work o f the Growth 
Chamber Working Group (7, 15, 16) demonstrates how difficult it is 
to define and measure things as apparently obvious as temperature, 
C 0 2 concentration, or (solar) radiation. Much more obvious illustra­
tions occur when researchers must quantify concepts related to 
psychological or behavioral phenomena. Frankly, each discipline 
must face its problems o f finding how to evaluate responses which re­
flect changes in its concepts.

How should you deal with the question o f relevant responses? 
Begin by defining yOur interest in conceptual rather than operational 
terms. For example, suppose you are interested in the effect o f con­
centrations o f a chemical on a leaf spot disease. This is a conceptual 
statement. Contrast this to an operational statement: Score each plant 
(0-10) and average the score for 15 plants per plot; or use plot yield as 
the measure o f the effect o f the disease. At interpretation time you 
need to be very aware that your operationally defined (and analyzed) 
variable may fall short o f your conceptual interest. By recognizing 
both conceptual and operational definitions you will be more aware o f 
your variable’ s limitations. I f  this discussion seems incomplete, con­
sider sections 4.1-4.6, 9.1 and 9.6 in Wilson (18).

Continuous and discrete responses stand as opposites o f each other. 
Discrete responses can assume only isolated values usually associated 
with counts, while continuous responses can assume any value be­
tween 2 bounds.

RESPONSES

Principle: Responses. (or measures or variables) should 
reflect on the object o f interest — nothing 
more and nothing less.

e.g.: consider height o f umble above ground 
vs.

length o f seed stalk.

Discrete responses. Two rather different situations produce dis­
crete responses from counts. For example, in studying sex ratios we 
might classify insects as male or female; in plant breeding we might 
classify roses as red, pink, or white; in sociology we might classify 
people in the Southwest as English-speaking, Spanish-speaking, or 
bilingual. We could simultaneously classify responses by 2 or more 
characteristics, such as classifying people by language capability and

socio-economic status, or dairy cows by udder-type and body-type, 
etc. After classification, discrete data result from counting the 
number o f experimental units in each class or category. The binomial 
or various multinomial distributions underlie the statistical formula­
tion and analysis o f such categorical data. The other sort o f discrete 
data likewise aise from counts, but without any categorization. Con­
sider counting the deer on a plot o f ground, the times a particular 
banded quail enters a bird traps during a summer, the adult males 
seeking jobs through a particular employment office, or the weeds in 
a particular farm plot. Numerous probability distributions exist for 
such responses. The Poisson and the negative binomial are 2 o f the 
important ones. Sometimes you might mistakenly conclude that you 
have this latter type o f discrete data when you really have a categori­
cal situation. I f  your counts have a known upper limit, you probably 
have categorical data. For example, you may count the number o f 
seeds that germinate in a plot, but if you know how many you planted, 
then you have the dichotomous response o f germinate/not germinate, 
counts o f which could behave like binomial random variables.

Continuous responses. Do continuous responses exist? Certainly. 
Consider your height: You began life as a zygote, with a height near 
(bounded below by) zero; as you grew to your present stature, you as­
sumed every height between essentially zero and your current height.

Any numerical evaluation o f a continuous response represents a 
discrete approximation in this sense: I f  we measure to the nearest 
0.01, then a recorded response o f 17.23 means that the actual re­
sponse lay between 17.225 and 17.235, and similarly if we measure 
to the nearest 0.1,0.001, etc. This discreteness o f evaluation poses no 
difficulty provided we do not seek to detect differences between treat­
ments o f the same magnitude at this precision o f measurement. O f 
course, with additional care, more precise instruments, more exact­
ing conditions o f evaluation, 0.01 can be reduced to 0.001, for exam­
ple. Operationally, this observation serves as a criterion for testing 
the continuity o f a response. Thus, i f  additional care, more precise in­
struments, etc., can produce increasing refinement in a response’ s 
evaluation, then you are considering a continuous response. This con­
dition is only sufficient, not necessary, i.e ., there exist continuous re­
sponses that we cannot evaluate. Most behavioral, sensory and many 
condition responses evade numerical evaluation because we lack an 
instrument for measuring the concept. For example, plants or animals 
differ perceptibly in their vigor. W e can arrange several plants or ani­
mals o f the same species in order by their vigor without ever getting a 
numerical value for ‘ ‘ vigor” ; or, in other situations, we could replace 
“ vigor”  by palatability for foods, by aggressiveness o f humans, or 
endurance o f fish, etc.

Relative and absolute evaluation. Thus, our evaluation o f a con­
tinuous response may produce either relative or absolute responses. 
Ranks frequently get involved with relative responses, whereas abso­
lute evaluation produces our usual “ numbers” . Constructed re­
sponses, unfortunately, may masquerade as absolute evaluations. 
Numbers, not measures, result from making arithmetic composites o f 
various human perceptions or actions. For example, the landscape ar­
chitect studying the asthetic appeal o f a planting, the behavioral sci­
entist studying a bird’ s territoriality, the child psychologist studying 
pre-schoolers’ mathematical intuition, or the plant scientist studying 
disease resistance, all sense certain situations, assign numbers to vari­
ous situations in some rational manner, and create a score by combin-
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Fig. 2. Schematic diagram o f a research study.

ing these numbers; again, probably in a rational fashion. But do these 
people have measurements? Certainly not! A  kilogram is a kilogram 
whether it represents the unit difference between 1 and 2 kg. or be­
tween 1000 and 1001 kg.; the same thing cannot be said about a 
created score. For example, a plant with an infection score o f 4 suffers 
the disease more severely than one with a score o f 3, but both remain 
fairly healthy, while the same unit difference between scores o f 9 and 
10 could mean the difference in life or death o f the plant. As a valid 
score increases, the response we seek to characterize increases, and 
conversely. (W e could use this property to examine the validity o f a 
scoring scheme.) In this way a score forms the basis for comparing 
experimental units relative to the responses by producing a relative, 
(not absolute) evaluation o f the response.

An even more confusing situation occurs when we use an abso­
lutely evaluated response to characterize some other response. For 
example, to study how several rearing situations (treatments) could 
affect birds’ propensity to disperse, we could raise birds under the 
several situations, release them from some common point and meas­
ure their distance from the release point after some reasonable time. 
Distance has a scale with well-defined units, but does 1 distance unit 
correspond to 1 unit o f propensity to disperse? Probably not. Consider 
2 birds that went 0.1 and 1.1 miles, as opposed to 2 birds that went 24 
and 25 miles respectively. I am inclined to say that the first pair dif­
fered greatly in their propensity to disperse, while the second differed 
little, even though, 1.1-0.1 =  1.0 =  26-25.

You must face the problem o f whether your data— numbers —  rep­
resent scores or the direct evaluation o f a response o f interest on a 
well-defined scale. This distinction is important, because the statisti­
cal formulation o f your experimental questions and the associated 
analyses rest heavily upon your decision. Comparatively evaluated

responses usually should be analyzed by rank techniques, while abso­
lutely evaluated responses often yield to the analysis o f variance or re­
gression techniques.

Continuous responses, determined with the assistance o f some de­
vice (such as a length or a weight), enable us to examine further is­
sues, namely, precision and accuracy. Precision deals with the close­
ness together o f several evaluations o f the same response, for exam­
ple, several weighings o f the contents o f a package o f sugar. Special 
procedures must be invoked if you want to detect differences between 
treatments that are o f the same magnitude as your precision. Accu­
racy, on the other hand, deals with what we loosely call bias. Any 
miscalibrated instrument provides a superficial, but nontrivial, exam­
ple. You should check both precision and accuracy on usual as well as 
new responses.

TYPES OF RESPONSES

• Discrete
• Continuous

Ordinal — rank — Relative Evaluation 
Measure — Absolute Evaluation

Response designs
The response design describes the relation o f individual responses 

to their experimental units. In the mum example, each experimental 
unit contained 5 pots from which plant heights were obtained. These 
individual plants provide an example o f  what we will call evaluation 
units.
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Evaluation units. W e seek inferences from populations o f experi­
mental units, but we may have difficulty evaluating responses on the 
experimental units. Laboratory evaluation o f chemical responses pro­
vides especially obvious examples. W e cannot practically evaluate 
the calcium content o f a bale o f hay, the caloric equivalent o f a 
sheep’ s body, or the size o f each egg in a female trout ready to lay 
eggs. Similarly, to study the grammatical style o f a particular author 
we may make a detailed examination o f a sample o f  pages from his 
writing. A  dairy scientist trying to evaluate the breeding potential o f 
bulls for transmitting milk production cannot even get a related re­
sponse from the experimental units; he must study the bulls’ 
daughters’ milk production.

These examples suggest an obvious way to define an evaluation 
unit, namely that unit o f experimental material that yields a response. 
At first, this definition o f an evaluation unit may seem very similar to 
other authors’ definitions o f sampling unit as a randomly selected part 
o f an experimental unit. But an evaluation unit exhibits greater gener­
ality in 2 ways. It does not have to represent a random sample, be­
cause sometimes we will allow the unit to have a structure. Further, 
the evaluation unit may be physically separate from the experimental 
unit: witness the bulls’ daughters.

Repeated evaluations. When some difficulty attaches to the evalu­
ation o f the response on an experimental unit, such as measuring the 
length o f a wiggling fish, we can make several independent evalua­
tions o f the response to increase the measurement precision. This has 
a very minor effect on the analysis. On the other hand, nonindepen­
dent repeated evaluation can substantially alter the analysis. Numer­
ous examples o f this occur when experimental units are subjected to 
treatments for some time, like plants given a nutrient, animals on 
diets, or students in a learning situation, because the response can be 
evaluated several times.

Net effect. Normally, we seek inferences to populations o f experi­
mental units. Thus, most o f our interpretation rests upon composites 
o f responses from the evaluation units —  one composite for each ex­
perimental unit. W e can draw inferences from the response design, 
but these inferences tell us about our evaluation process, nothing 
about the experimental unit or treatments. They have great value in 
planning a good response design in future studies, but otherwise, rela­
tively few subject matter inferences come from the analysis o f the re­
sponse design.

Relation of the Parts
W e have considered 3 major parts o f a research study: 1) the re­

sponse design, 2) the treatment design, and 3) the experimental de­
sign. Now consider how these relate to each other. Fig. 2 relates these 
parts schematically.

Impact on the study. Your research objectives translate into specif-

Source of Variation

Total

Mean

Among Evaluation Units

Among Experimental Units 

A m ong  Treatm ents

D irected  by the

Degrees of Freedom

tev

1

tev-1

te-1

t-1

1 } T reatm ent Design 

Among Exp. Units Within Treatments 

I I D irected  by the 

) Expe rim en ta l Design 

Residua l 1

Among Eva/. Units Within Exp. Units 

D irec ted  by  the 

Response Design

Residua l 2

1}

t(e -l)

J}
t (e—1 )-h 

te(v-l)

1 }
te(v-1)-s

Fig. 3. A general analysis ot variance table demonstrating the effect o f the treatment, 
experimental and response design.

Source of Variation

Total

Mean

Among Individual Pot Heights 

Among Groups of Plants 

Among Water Sources 

Regression 

Lack of F it

Among Groups of Pots Within 
Water Sources

Benches (= Blocks)

Residual

Among Pot Heights W ithin Groups

Degrees of Freedom

360

1

359

71

23

k

23-k

48

2

46

288

Fig. 4. Specific analysis o f variance table for the chrysanthemum illustration.

ic objectives for a study; these dominate your choice o f treatments. 
Once the treatments have been selected, they exert no influence on the 
research study other than their presence. Confusing variability man­
ifests itself in variation among experimental units and separately in 
evaluation o f responses from them. The experimental design is cho­
sen to minimize the impact o f variation among experimental units; it 
has rather substantial impact on the setup and conduct o f the study. 
The response design first impinges on the study when the data are 
gathered, although it should be thoroughly planned before the study is 
started.

Impact on the analysis. Each design component influences the 
analysis in a fairly distinctive way. For the present, consider illustrat­
ing this with an analysis o f variance. Fig. 3 and 4 present a general 
analysis o f variance and illustrate it with the mum example. Only 
sources o f variation and degrees o f freedom appear; the other columns 
(sums o f squares, mean squares, expected mean squares and F-statis- 
tics) depend to varying extents on the specific nature o f the 3 design 
components. For symbolism, suppose the research study has t treat­
ments, e experimental units per treatment, and v evaluation units per 
experimental unit. First, total variation is partitioned into the mean 
(for over-all size o f the response) and variation among (or between) 
evaluation units; this is decomposed into variation among experimen­
tal units and the remainder, which is variation among evaluation un­
its within experimental units. (Note that varying indentations indi­
cate different levels o f subdivision o f sums o f squares.) Variation 
among experimental units is partitioned into its 2 contributory com­
ponents: among treatments and among experimental units within 
treatments. At this point the 3 design components take over so that the 
completion o f the partitioning depends on them.

The italicized lines in these analysis o f variance tables usually will 
not appear in a completed table because they represent only inter­
mediate steps. The total line may appear without the mean line, indi­
cating a “ corrected”  total, i.e., a line arrived at by taking the differ­
ence between the sums o f squares and degrees o f freedom o f the first 2 
lines indicated here. We will include both lines rather than their dif­
ference, because this explicitly accounts for all o f the degrees o f free­
dom.

The above discussion o f analysis was oriented toward the analysis 
o f variance, a technique designed for measurement (not relative) 
data. Earlier, we noted the existence o f discrete and ordinal types o f 
data. Analysis-of-variance-like procedures are being developed for 
such situations. See Grizzle, Starmer, and Koch (6) for discussion o f 
the conceptual background o f these procedures for discrete data; they 
are illustrated in Koch (9). Powerful statistical techniques also exist 
for the analysis o f rank data. See Conover and Iman (4) for an entry 
point into this literature.

Comments on terminology
The users o f statistics encounter a frustrating problem: statisticians 

seem inconsistent in the definitions they attach to certain words and in 
their use o f symbols. This problem occurs for 2 rather good reasons.
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First, statistics is a rather young discipline; as such, it has not gone 
through the standardization process that has been experienced by 
chemistry, physics, and many o f the more-established sciences. 
Further, what an author tries to communicate to a particular audience 
influences his choice o f notation and terminology. In many instances, 
several reasonable terms may describe an idea, but an author ordinar­
ily chooses the term his audience is most likely to understand. Thus, 
we will find that an author writing for agriculture may use one set o f 
names for something, whereas an author writing for education may 
use another, while engineers use still another set o f names.

RESPONSE DESIGNS

Definition: An evaluation unit is the unit o f research ma­
terial on which a response is evaluated.

e.g. Experiment Unit = plot o f onions
Evaluation Unit =  seed stalk (height)

• The response design specifies the relation between the 
experimental units the evaluation units, and the re­
sponses.

Originally, much o f what now is regarded as standard statistical 
procedures came about to meet problems in agriculture. Many o f the 
names that were then associated with basic ideas in statistics seemed 
unreasonable, and in a strictly agricultural situation, they remain 
reasonable. However, as statistics has found application in an ex­
panding set o f areas, these names become less and less appropriate. In 
writing this anatomy, I sought to develop some general ideas about 
the meaning o f some basic terms. I chose names that should com­
municate an idea; in doing this I coined 2 new phrases and expanded 
meanings o f some common phrases to the general situation.

For example, the phrase “ experimental design”  appears to have 2 
meanings in the statistical literature. In one sense it deals with all as­
pects o f the analysis o f data through the statistical technique called the 
analysis o f variance. In these settings, exemplified in various books 
(3, 5, 8, 1J, 13), the word “ experimental design”  usually remains 
undefined. I f  it is defined, the definition is cursory. In other writings, 
where authors define an experimental design, it has a specific mean­
ing, related fairly closely to mine —  that is, the relation between the 
treatments and the experimental units. For example, Ostle (12) and 
Steele and Torrie (14) illustrate this view o f experimental design.

An experimental unit usually is defined as the amount o f experi­
mental material to which an individual treatment is applied. This defi­
nition fits production agriculture, but does not apply effectively to 
many areas o f research. Frequently, treatments do not actually get ap­
plied to the experimental unit, but come with it; for example, breed o f 
a cow or the age o f a child. The experimental unit is selected from a 
population o f objects with that characteristic. The definition o f ex­

perimental unit set forth earlier represents a broadening o f the usual 
definition to cover such situations.

The treatment design, which specifies how the treatments relate to 
each other for the purpose o f drawing context inferencess, frequently 
gets recognized implicitly by various authors, but it does not become 
a central focus. In many statistical writings, chapters and sets o f chap­
ters are organized around distinction between the treatment design 
and experimental design. Only Federer (5) appears to introduce the 
idea o f a treatment design explicity, but he merely mentions it. From 
conversations with him, I know now it has become central in his 
thinking.

The response design usually gets relegated to a secondary position 
in much o f agriculture and biology. Thus it does not appear in writ­
ings o f statistical topics related to these areas. On the other hand, it 
does get recognized, though not usually named explicitly, in some o f 
the behavioral sciences. For example, the book by Myers (11) has 3 
chapters structured around this idea.

In conclusion, remember that your interest lies in research, not in 
statistics. Nevertheless, statistics can help you conduct and analyze 
experiments so that you will obtain the most information possible for 
fixed resources. To accomplish this maximization you need to: care­
fully state your objectives; choose responses (measures and treat­
ments) which will reflect on the objectives; set up the experimental 
material to block out known sources o f heterogeneity; tune your 
statistical analysis to the treatment, experimental, and response de­
signs used; and interpret the statistical results in relation to your ob­
jectives.
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